Ядерные силы России и США по состоянию на 2020-й год. Состав и дислокация

Физика и астрономия — древнейшие науки о природе. Достопримечательности человеческой культуры, найденные в различных уголках земного шара, являются свидетельствами древнего интереса человека к природным явлениям. Наблюдать за природными явлениями заставляли человека жизненные потребности, а также известная каждому из нас любознательность. Особенно людей привлекало звездное небо, которое и до сих пор остается таинственным и неизведанным.

Первые представления о мироздании были очень наивными, они тесно переплетались с религиозными верованиями, в основу которых было положено разделение мира на две части — земную и небесную. Если сейчас каждый ребенок знает, что Земля — ​​это небесное тело, то раньше «земное» противопоставлялось «небесному». Люди думали, что существует «твердь небесная», к которой прикреплены звезды, а Землю принимали за неподвижный центр мироздания.

Возникновение естественных наук

Но, в конце концов, благодаря человеческой деятельности накопилось столько знаний, что это привело к зарождению первых наук. Первыми физиками были греческие мыслители, которые попытались объяснить наблюдаемые явления природы. Самым выдающимся из древних мыслителей был Аристотель (384-322 гг. до н.э.), который ввел слово «фюзис», что в переводе с греческого означает природа. Еще в античные времена начали развиваться методы научного познания природы (наблюдение, предположение (гипотеза), моделирование, мыслительный эксперимент и т.д.). Из трудов ученых-философов античного периода начали свое развитие все естественно-математические науки — физика, астрономия, химия, география, биология, математика.

Развитие математики, географии, физики, химии, а также других наук, если не прямо, то косвенно было связано с успехами и запросами астрономии в исследовании небесных тел.

Астрономия (от греч. «Астрон» — звезда и «номос» — закон) — наука о небесных телах, о законах их движения, строения и развития, а также о строении и развитии Вселенной в целом.

Во II в. н. э. александрийский астроном Птолемей предложил геоцентрическую ( «гео» — земля) «систему мира». Вокруг Земли, по Птолемею, движутся (в порядке удаленности от Земли) Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, звезды. Но уже в то время видимые наблюдения за движением Луны, Солнца, планет указывали на то, что это движение гораздо сложнее. Поэтому каждая из планет, по мнению Птолемея, движется не просто вокруг Земли, а вокруг некоторой точки, которая, в свою очередь, движется по кругу, вокруг Земли. Система мироздания Птолемея была (под покровительством церкви) доминирующей в науке в течении четырнадцати веков. Первыми, кто стал предлагать новые взгляды на мироздание, были итальянские ученые Николай Кузанский и Леонардо да Винчи, которые утверждали, что Земля движется, что она не является центром Вселенной и не занимает в ней чрезвычайного места.

Смелым ученым, «сдвинувшим Землю, остановившим Солнце», был поляк Николай Коперник (1473-1543 гг.). Гелиоцентрическая ( «гелио» — Солнце) «система мира» Коперника не признавалась церковью. По приговору инквизиции в 1600 г. был сожжен в Риме выдающийся итальянский философ, последователь Коперника Джордано Бруно (1548-1600 гг.), который, развивая учение Коперника, утверждал, что во Вселенной нет и не может быть центра, что Солнце — это только центр Солнечной системы. Он также высказывал гениальную догадку о том, что звезды — такие же «солнца», как наше, причем вокруг них движутся планеты, на многих из которых существует жизнь.

Развитие физики и астрономии

Начальные сведения о фундаментальных физических теориях легли в качестве основы современных физики и астрономии. С середины XVI в. наступает качественно новый этап развития физики — исследователи начинают применять эксперименты и опыты. Мощным толчком к формированию физики и астрономии как наук стали научные работы Исаака Ньютона. В своей работе «Математические начала натуральной философии» (1687 г.) он разрабатывает математический аппарат для объяснения и описания механических явлений. На сформулированных им законах была построена так называемая классическая (ньютоновская) механика. А знаменитый закон всемирного тяготения заложил основы небесной механики. Гениальность Ньютона заключается в том, что он доказал универсальность силы тяжести, или гравитации, то есть что та же сила, которая действует на яблоко во время его падения на Землю, притягивает также Луна, которая вращается вокруг Земли. Сила притяжения управляет движением звезд и галактик, а также влияет на эволюцию всей Вселенной. Принцип инерции, открытый Галилео Галилеем, закон всемирного тяготения Исаака Ньютона и общая теория относительности Альберта Эйнштейна — все эти открытия были подтверждены в дальнейшем на основании астрономических данных.

Огромная энергия связи нуклонов в ядре свидетельствует о том, что между нуклонами имеется очень интенсивное взаимодействие. Это взаимодействие носит характер притяжения. Оно удерживает нуклоны на расстояниях ~ 10-13 см друг от друга, несмотря на сильное электростатическое отталкивание между протонами. Ядерное взаимодействие между нуклонами получило название сильного взаимодействия. Его можно описать с помощью поля ядерных сил. Перечислим отличительные особенности этих сил.

1. Ядерные силы являются короткодействующими — при расстояниях между нуклонами, превышающих примерно 2*10-13 см, действие их уже не обнаруживается. На расстояниях, меньших 1*10-13 см, притяжение нуклонов заменяется отталкиванием.

2. Сильное взаимодействие не зависит от заряда нуклонов. Ядерные силы, действующие между двумя протонами, протоном и нейтроном и двумя нейтронами, одинаковы по величине. Это свойство называется, зарядовой независимостью ядерных сил.

3. Ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Так, например, нейтрон и протон удерживаются вместе, образуя дейтон, только в том случае, когда их спины параллельны друг другу.

4. Ядерные силы обладают свойством насыщения (это означает, что каждый нуклон в ядре взаимодействует с ограниченным числом нуклонов). Это свойство вытекает из того факта, что энергия связи, приходящаяся на один нуклон, примерно одинакова для всех ядер, начиная с 2Не4. Кроме того, на насыщение ядерных сил указывает также пропорциональность объема ядра числу образующих его нуклонов [см. формулу (1.6)].

По современным представлениям сильное взаимодействие обусловлено тем, что нуклоны виртуально обмениваются частицами, получившими название мезонов. Для того чтобы уяснить сущность этого процесса, рассмотрим прежде, как выглядит кулоновское взаимодействие с точки зрения квантовой электродинамики.

Взаимодействие между заряженными частицами осуществляется через электромагнитное поле. Мы знаем, что это поле может быть представлено как совокупность квантов энергии — фотонов. Согласно представлениям квантовой электродинамики процесс взаимодействия между двумя заряженными частицами, например электронами, заключается в обмене фотонами. Каждая частица создает вокруг себя поле, непрерывно испуская и поглощая фотоны. Действие поля на другую частицу проявляется в результате поглощения ею одного из фотонов, испущенных первой частицей. Такое описание взаимодействия нельзя понимать буквально. Фотоны, посредством которых осуществляется взаимодействие, являются не обычными реальными фотонами, а виртуальными. В квантовой механике виртуальными называются частицы, которые не могут быть обнаружены за время их существования. В этом смысле виртуальные частицы Можно назвать воображаемыми. Чтобы лучше понять смысл термина «виртуальный», рассмотрим покоящийся электрон. Процесс создания им в окружающем пространстве поля можно представить уравнением:

ее+ћщ (3.1)

Суммарная энергия фотона и электрона больше, чем энергия покоящегося электрона. Следовательно, превращение, описываемое уравнением (3.1), сопровождается нарушением закона сохранения энергии. Однако для виртуального фотона это нарушение является кажущимся. Согласно квантовой механике энергия состояния, существующего время,оказывается определенной лишь с точностью , удовлетворяющей соотношению неопределенностей:

Из этого соотношения вытекает, что энергия системы может претерпевать отклонения , длительность которыхне должна превышать значения, определяемого условием (3.2). Таким образом, если испущенный электроном виртуальный фотон будет поглощен этим же или другим электроном до истечения времени= ћ/? (где ? =ћщ), то нарушение закона сохранения энергии не может быть обнаружено.

Если электрону сообщить дополнительную энергию (это может произойти, например, при соударении его с другим электроном), то вместо виртуального фотона может быть испущен реальный фотон, который может существовать неограниченно долго.

За время виртуальный фотон может передать взаимодействие между точками, разделенными расстоянием

.

где — комптоновская длина волны данной частицы (положим, что частица — переносчик взаимодействия, движется со скоростью с).

В 1934 г. И. Е. Тамм высказал предположение, что взаимодействие между нуклонами также передается посредством каких-то виртуальных частиц. В то время, кроме нуклонов, были известны лишь фотон, электрон, позитрон и нейтрино. Самая тяжелая из этих частиц — электрон обладает комптоновской длиной волны , приблизительно в 200 раз превышающей радиус действия ядерных сил (равный ~2*10-13 см). Кроме того, величина сил, которые могли бы быть обусловлены виртуальными электронами, как показали расчеты, оказалась чрезвычайно малой. Таким образом, первая попытка объяснения ядерных сил с помощью обмена виртуальными частицами оказалась неудачной.

В 1935 г. Японский физик X. Юкава высказал смелую гипотезу о том, что в природе существуют пока не обнаруженные частицы с массой, в 200–300 раз большей массы электрона, и что эти-то частицы и выполняют роль переносчиков ядерного взаимодействия, подобно тому как фотоны являются переносчиками электромагнитного взаимодействия. Юкава назвал эти гипотетические частицы тяжелыми фотонами. Так как по величине массы эти частицы занимают промежуточное положение между электронами и нуклонами, они впоследствии были названы мезонами (греческое м?упт означает средний).

В 1936 г. Андерсон и Неддермейер обнаружили в космических лучах частицы с массой покоя, равной 207 mе. Вначале полагали, что эти частицы, получившие название м-мезонов, или мюонов, и есть переносчики взаимодействия, предсказанные Юкавой. Однако впоследствии выяснилось, что м-мезоны очень слабо взаимодействуют с нуклонами, так что не могут быть ответственными за ядерные взаимодействия. Только в 1947 г. Оккиалини и Поуэлл открыли в космическом излучении еще один тип мезонов — так называемые р-мезоны, или пионы, которые оказались носителями ядерных сил, предсказанными за 12 лет до того Юкавой.

Существуют положительный (р+), отрицательный (р) и нейтральный (р) пионы. Заряд р+– и р–мезонов равен элементарному заряду е. Масса заряженных пионов одинакова и равна 273 те (140Мэв), масса р-ме- зона равна 264 те (135Мэв). Спин как заряженных, так и нейтрального р-мезона равен нулю (s= 0). Все три частицы нестабильны. Время жизни р+– и р–мезонов составляет 2,55*10-8 сек,р-мезона — 2,1 * 10-18 сек. Подавляющая часть (в среднем 99,97%) заряженных пионов распадается по схеме

р+ > м+ + х, р > м + ? (3.3)

+и м–положительный и отрицательный мюоны, х– нейтрино, ?– антинейтрино). Остальные 0,03% распадов протекают по другим схемам (например, р > e+ х, р > р + e+ хи т. П., причем в случае р+ образуется е+, т. Е. позитрон, а в случае р возникает е, т. Е. электрон).

Остальные 1,3% распадов осуществляются с рождением пары электрон — позитрон и г-кванта (р>e+ + е + г) или двух электронно-позитронных пар (р>е++ е++ е).

Частицы, называемые м-мезонами, или мюонами, по современной классификации не относятся к категории мезонов; вместе с электронами и нейтрино они образуют группу лептонов (поэтому вместо термина «м-мезон» лучше пользоваться термином «мюон»).Мюоны имеют положительный (м+) или отрицательный (м) заряд, равный элементарному заряду е (нейтрального мюона не существует). Масса мюона равна 207 mе (106Мэв), спин — половине (s= 1/2). Мюоны, как и р-мезоны, нестабильны, они распадаются по схеме:

м+++ х +?, м+ х +?. (3.5)

Время жизни обоих мюонов одинаково и равно 2,22*10-6 сек.

Вернемся к рассмотрению обменного взаимодействия между нуклонами. В результате аналогичных (3.1) виртуальных процессов:

(3.6)

(3.7)

, (3.8)

нуклон оказывается окруженным облаком виртуальных р-мезонов, которые образуют поле ядерных сил.

Поглощение этих мезонов другим нуклоном приводит к сильному взаимодействию между нуклонами, происходящему по одной из следующих схем.

1)

Протон испускает виртуальный р+-мезон, превращаясь в нейтрон. Мезон поглощается нейтроном, который вследствие этого превращается в протон. Затем такой же процесс протекает в обратном направлении (рис. 3, а). Каждый из взаимодействующих нуклонов часть времени проводит в заряженном состоянии, а часть– в нейтральном.

2)

Нейтрон и протон обмениваются р-мезонами (рис. 3,б).

3)

Первый из этих трех процессов находит экспериментальное подтверждение в рассеянии нейтронов на протонах. При прохождении пучка нейтронов через водород в этом пучке появляютсяпротоны, многие из которыхимеют ту же энергию и направление движения, что и падающие нейтроны. Соответствующее число практически покоящихся нейтронов обнаруживается в мишени. Совершенно невероятно, чтобы такое большое число нейтронов полностью передавало свой импульс ранее покоившимся протонам в результате лобовых ударов. Поэтому приходится признать, что часть нейтронов, пролетая вблизи протонов, захватывает один из виртуальных р+-мезонов. В результате нейтрон превращается в протон, а потерявший свой заряд протон превращается в нейтрон (рис. 4).

Если нуклону сообщить энергию, эквивалентную массе р-мезона, то виртуальный р-мезон может стать реальным. Необходимая энергия может быть сообщена при столкновении достаточно ускоренных нуклонов (или ядер) либо при поглощении нуклоном г-кванта. При очень больших энергиях соударяющихся частиц от нуклона может «оторваться» несколько р-мезонов. В космических лучах, где встречаются частицы с энергиями ~ 104Гэв, наблюдаются случаи рождения до 20 реальных р-мезонов при одном соударении.

В соответствии с процессом (3.7) нейтрон часть времени проводит в виртуальном состоянии (р + р). Орбитальное движение р–мезона приводит к возникновению наблюдаемого у нейтрона отрицательного магнитного момента. Аномальный магнитный момент протона (2.79 мвместо одного ядерного магнетона) также можно объяснить орбитальным движением р+-мезона в течение того промежутка времени, когда протон находится в виртуальном состоянии (п + р+).

Заключение

Большой адронный коллайдер – самый мощный в мире ускоритель заряженных частиц на встречных пучках, построенный Европейским центром по ядерным исследованиям (CERN) в подземном тоннеле протяженностью 27 километров на глубине 50-175 метров на границе Швейцарии и Франции. На нем физики хотят проверить некоторые положения специальной теории физики элементарных частиц. Был запущен осенью 2008 года, однако из-за аварии эксперименты на нем начались только в ноябре 2009 года, а на проектную мощность он вышел в марте 2010 года.

Большой адронный коллайдер – это, действительно, уникальная установка, призванная исследовать очень существенные и очень важные аспекты природы. Прежде всего, это машина, где сталкиваются протоны с энергией 7 ТэВ в каждом пучке. Создавалась она достаточно долго. Первые обсуждения были еще в конце 70-х годов. И вот, наконец, эта установка сделана, и на этом коллайдере созданы четыре экспериментальных установки для исследования этих взаимодействий. Предметом изучения является взаимодействие при сверхвысоких энергиях. И здесь очень важным является то, что, перейдя к энергии в 14 ТэВ, мы переходим очень важный порог. Каждый серьезный ускоритель или коллайдер строился с расчетом на некую физику, которую можно делать на этой машине. Этот коллайдер при энергии взаимодействия в 14 ТэВ позволяет изучать очень важные и абсолютно новые аспекты природы. Достаточно сказать, что вопрос, который задается в связи с этими исследованиями, это вопрос о том, откуда берется масса всяких объектов, нас с вами в том числе, из чего состоит Вселенная в целом. Мы знаем, что на сегодняшний день из известных нам частиц состоит всего 4% вселенной, а остальные 96% – это нечто неизвестное.

Спектр задач чрезвычайно широк и исследования будут продолжаться предположительно 20 лет. На Большом адронном коллайдере будут происходить столкновения элементарных частиц.

Дело в том, что в природе постоянно и повсеместно происходят столкновения частиц, ускоренных естественным образом до таких же или до еще более высоких энергий. Частицы, которые ускорены в природе естественным образом, называются космическими лучами. Поток таких космических лучей, их энергия, достоверно измерены на земле. И получается, что например, только в Солнечной системе природа-матушка уже произвела 1 миллиард полных 10-летних программ Большого адронного коллайдера. Такие столкновения происходят везде, не только в Солнечной системе, и на всех других звездах, на планетах, и вот всесторонний анализ этих данных позволяет… несмотря на бомбардировку, постоянную бомбардировку этими космическими лучами, Земля, Солнце, все другие планеты продолжают существовать.

атом ядро связь заряженный

2014-05-26

Поскольку ядра достаточно устойчивы, то протоны и нейтроны должны содержаться внутри ядра какими-то силами, причем очень значительными. Что это за силы? Наверное можно сказать, что это не гравитационные силы, которые слишком слабы. Устойчивость ядра не может быть объяснена также электромагнитными силами по той причине, что между одноименно заряженными протонами действует электрическое отталкивание. А нейтроны лишены электрического заряда.

Получается, между нуклонами в ядре действуют особые силы. Эти силы назвали ядерными.

Основные свойства ядерных сил

1). Ядерные силы являются короткодействующими. Измерения показали, что интенсивное взаимодействие между нуклонами происходит на расстояниях, равных размерам нуклонов. На больших расстояниях действуют только электромагнитные силы.

2). Ядерные силы являются очень мощными. Они в 1000 раз больше силы электростатического отталкивания двух протонов на близком расстоянии (примерно 10-15 м).

3). Ядерные силы являются силами притяжения. Поэтому они удерживают нуклоны внутри ядра.

4). Ядерные силы действуют между любыми нуклонами (протон протон; нейтрон нейтрон; протон нейтрон). Во всех этих случаях ядерные силы одинаковы.

5). Ядерные силы обладают свойством насыщения, заключается в том, что нуклон оказывается способным к ядерного взаимодействия одновременно лишь с небольшим числом нуклонов -соседей.

Загрузка…

Л.И. БаюровКурс лекций по сельскохозяйственной радиологии

Учебное пособие. – Краснодар: КубГАУ, 2009. – 112 с.

Предыдущая Оглавление Следующая

1. Строение атома и ядра. Ядерные силы сцепления

Еще в V веке до нашей эры греческие мыслители Левкипп и Демокрит сформулировали результаты своих размышлений о структуре материи в виде атомистической гипотезы: вещество невозможно бесконечно делить на все более мелкие части, существуют «окончательные», неделимые частицы вещества. Все материальные предметы состоят из разнообразных атомов (от греч. atomos – «неделимый», «неразрезаемый»).

Атом – это наименьшее структурное образование любого из простейших химических веществ, называемых элементами. Хотя понятие атома, как и сам термин, имеет древнегреческое происхождение, только в ХХ веке была твердо установлена истинность атомной гипотезы строения веществ.

Размер и масса атомов чрезвычайно малы. Так, диаметр самого легкого атома (водорода) составляет всего 0,53 . 10-8 см, а его масса 1,67 . 1024 г.

Развитие исследований радиоактивного излучения, с одной стороны, и квантовой теории – с другой, привели к созданию квантовой модели атома Резерфорда – Бора. Но созданию этой модели предшествовали попытки построить модель атома на основе представлений классической электродинамики и механики.

Ученик Джозефа Томсона Эрнест Резерфорд (Нобелевская премия по химии, 1908) в результате знаменитых экспериментов по рассеянию золотой фольгой α-частиц «разделил» атом на маленькое положительно заряженное ядро и окружающие его электроны. Согласно ей он напоминал миниатюрную солнечную систему, в которой «планеты» – электроны вращаются вокруг «Солнца» – ядра.

Благодаря работам Резерфорда стало ясно, как устроены атомы: в середине атома находится крохотное массивное ядро, а вокруг ядра «роятся» электроны и образуют легкую оболочку атома. При этом электроны, располагаясь и вращаясь в разных плоскостях, создают отрицательный суммарный заряд, а ядро – положительный. В целом же атом остается электронейтральным, так как положительный заряд ядра полностью компенсируется отрицательным зарядом электронов.

Однако, согласно законам классической механики и электродинамики, вращение электрона вокруг ядра должно сопровождаться электромагнитным излучением с непрерывным спектром. Но это противоречило известным еще с 1880 г. линейчатым спектрам газови паров химических элементов. Противоречие разрешил в 1913 г.ученикРезерфорда датский физикНильс Бор (Нобелевская премия по физике, 1922), разработав квантовую модель строения атома на основе квантовой теории излучения и поглощения света, созданной Максом Планком (Нобелевская премия по физике, 1918) и Альбертом Эйнштейном (Нобелевская премия по физике, 1921).

В 1932 г. наш отечественный физик Дмитрий Дмитриевич Иваненко и немецкий ученый Вернер Гейзенберг(Хайзенберг) независимо друг от друга высказали предположение, что нейтрон является наряду с протоном структурным элементом ядра. Однако, протонно-нейтронная модель ядра была встречена большинством физиков скептически. Даже Э. Резерфорд полагал, что нейтрон – это лишь сложное образование протона и электрона.

В дальнейшем протон и нейтрон стали рассматриваться как два состояния одной частицы – нуклона, и идея Иваненко стала общепринятой, а в 1932 г. в составе космических лучей была открыта еще одна элементарная частица – позитрон.

В настоящее время существует гипотеза о делимости ряда элементарных частиц на субчастицы – кварки.

Кварки – это гипотетические частицы, из которых, как предполагается, могут состоять все известные элементарные частицы, участвующие в сильныхвзаимодействиях (адроны).

Итак, атомы состоят из трех видов элементарных частиц. В центре атома имеется ядро, образованное протонами и нейтронами. Вокруг него быстро вращаются электроны, образуя так называемые электронные облака. Количество протонов в ядре равно количеству электронов, движущихся вокруг него. Масса протона примерно равна массе нейтрона. Масса электрона гораздо меньше их масс (1836 раз).

Электрон (е) это устойчивая элементарная частица массой 9,1.10-28 г. Напомним еще раз, что он был открыт в 1897 г. английским физиком Джозефом Джоном Томсоном.

Название «электрон» первоначально предложенное английским учёным Джорджем Стони (1891) для заряда одновалентного иона происходит от греческого слова elektron, означающего «янтарь». Его заряд, измеренный в свое время американским физиком Робертом Милликеном (Нобелевская премия по физике, 1923), представляет собой наименьшее количество отрицательного электричества, существующее в природе. В зависимости от своей энергии, с которой электроны удерживаются вокруг ядра, они распределяются по электронным оболочкам или орбитам, которые обозначаются цифрами или буквами, начиная от ядра: 1-K, 2-L, 3-M, 4-N, 5-O, 6-P, 7-Q.

Максимальное количество электронов, вращающихся на каждой орбите, строго определено. Так, на орбите К их только 2, L-8, М-18, N-32 и т.д. Атомы, у которых внешняя электронная оболочка заполнена полностью, обладают особенно высокой устойчивостью и образуют группу химически неактивных инертных («благородных») газов (He, Ne, Ar, Kr, Xe и Rn).

Под действием бомбардировок элементарными частицами или квантами извне электроны способны переходить с одних орбит на другие или покидать пределы атома, присоединяясь к электронным оболочкам других атомов.

В первом случае возникает возбуждение, а во втором ионизация атома.

Электрон участвует в электромагнитных, слабых и гравитационных взаимодействиях и проявляет многообразие свойств в зависимости от типа взаимодействий. Электрон – представитель единого обширного семейства элементарных частиц, и ему в полной мере присуще одно из основных свойств элементарных частиц – их взаимопревращаемость.

Ядро атома имеет в среднем размер 1013 см, что меньше диаметра самого атома от 10 до 100 тысяч раз. В его состав входят ядерные частицы – нуклоны (от греч. nucleos – «ядро»), которые представлены протонами и нейтронами.

Протон (р) – это устойчивая элементарная частица массой 1,008 а.е.м., что превышает массу электрона в 1836 раз. Эта частица несет в себе положительный одинарный заряд. Как известно, за одну атомную единицу массы в химии принята масса 1/12 части ядра изотопа С12, что составляет 1,66.1027 кг.

Протон является сильно взаимодействующей частицей (адроном) и относится к «тяжёлым» адронам барионам. Важнейшим примером сильного взаимодействия с участием протона являются ядерные силы, связывающие нуклоны в ядре.

Нейтрон(n) был открыт в 1932 г. английским физиком Джеймсом Чедвиком (Нобелевская премия по физике, 1935) при облучении бериллиевой мишени потоком альфа-частиц, создаваемых полонием. Чедвик установил, что обнаруженное ранее немецкими физиками В.Боте и Г.Бекером проникающее излучение, которое возникает при бомбардировке атомных ядер  a-частицами, состоит из незаряженных частиц массой, близкой к массе протона.

Нейтрон устойчив только в составе стабильных атомных ядер. В свободном состоянии – это нестабильная частица, распадающаяся на протон, электрон и электронное антинейтрино.

Итак, протоны, входящие в ядро, определяют его заряд, а сумма масс протонов и нейтронов – его массу, которая практически и составляет массу самого атома ввиду ничтожности величины масс электронов.

Число протонов в ядре всегда равно числу электронов. В ядрах легких и устойчивых изотопов число p и n совпадает (Н- 1р и 1n, Не – 2р и 2n, О – 8р и 8n и т.д.). В ядрах же тяжелых элементов количество нейтронов существенно превышает число протонов.

Для характеристики соотношения нуклонов в ядерной физике и химии принята следующая запись элементов:

ZXA,

 где Х – символ элемента;А – массовое число; Z – заряд ядра (порядковый номер).

Таким образом, число протонов соответствует величине Z, а число нейтронов можно рассчитать по формуле: n = A-Z.

Например,      92U238         А = 238;  Z = 92;  n = 238 – 92 = 146

Нуклоны в ядре могут взаимно переходить друг в друга:

1) p ®  n + e+(позитрон) + υ (нейтрино) + Q

2) n ®  p + e(электрон) + υ~(антинейтрино) + Q

В результате этих переходов нейтроны и протоны остаются в ядре, а позитроны, электроны, нейтрино и антинейтрино вылетают из него.

Протоны ядра, неся положительный заряд, испытывают силу взаимного отталкивания, которая выражается законом Кулона: электрическая сила взаимодействия двух точечных элементарных зарядов прямо пропорциональна их величине и обратно пропорциональна квадрату расстояния между ними. Так как расстояние между протонами в ядре ничтожно мало, величина силы отталкивания чрезвычайно велика. Что же удерживает протоны в ядре?

Нейтрон не обладает электрическим зарядом, и электрические силы на него не действуют. Поэтому физики предположили, что внутри ядра действуют какие-то неизвестные до сих пор силы, которые «склеивают» протоны и нейтроны в единое ядро. Вскоре стали известны свойства этих сил, и в 1935 г. японский физик-теоретик Хидэки Юкава создал мезонную теорию ядерных сил взаимодействия.

Ядерные силы сцепления существуют благодаря наличию двух основных факторов:

1) нейтроны ядра выполняют роль своеобразного «разбавителя-буфера» протонов, не давая им взаимодействовать между собой;

2) между протонами и нейтронами действуют силы взаимного притяжения, которые отличны от электромагнитных и гравитационных сил.

Эти силы отличны от хорошо известных электростатических и гравитационных сил, не исчезающих даже на очень больших расстояниях.

Ядерные силы являются силами притяжения, что прямо следует из факта существования устойчивых ядер, вопреки электростатическому отталкиванию находящихся в них протонов. В пределах своего радиуса действия (до 10-13 см) ядерные силы достигают очень большой величины.

Предыдущая Оглавление Следующая

Элементарные частицы в ядре удерживаются особыми силами, называемыми ядерными. Кратко рассмотрим особенности этих сил.

Строение атомного ядра

В опытах Э. Резерфорда в начале XXв было установлено, что весь положительный заряд атома сконцентрирован в весьма малой части атома – в ядре.

Рис. 1. Планетарная модель атома.

Дальнейшее изучение радиоактивного распада привели его к выводу, что ядра атомов состоят из частиц – протонов. Кроме того, в ядра входят нейтроны, открытые позже. Массы протона и нейтрона (общее название – «нуклоны») очень близки, гораздо больше масс электронов, поэтому практически всю массу атома составляют именно они.

Рис. 2. Протоны и нейтроны в ядре.

Ядро самого легкого и распространенного элемента в Вселенной – водорода – состоит лишь из одного протона. Но, большинство ядер содержит большее количество протонов, оно равно атомному номеру элемента в таблице Менделеева. Самый тяжелый из стабильных элементов, не подверженных радиоактивному распаду – свинец-208, содержащий 82 протона и 126 нейтронов.

Все протоны заряжены одинаково, и такое большое число протонов, находящихся рядом, должно подвергаться действию больших сил отталкивания. Ядра должны очень быстро распадаться. Однако, в реальности этого не наблюдается. Следовательно, существуют силы, удерживающие протоны внутри ядра. Что это за силы ?

Ядерные силы

Силы электромагнитной природы выталкивают протоны из ядра, и не могут удерживать протоны вместе. Протоны обладают массой, а значит, должны испытывать гравитационное притяжение. Однако, подсчет показывает, что электрическое отталкивание между протонами в .25×10^{36}$ раз превышает силы гравитации.

Нуклоны в ядре удерживаются силами особой природы, отличной как от электрической, так и от гравитационной. Взаимодействие, порождающее эти силы, называется «ядерным» или Сильным. Оно примерно в сто раз более сильное, чем электрическое, и его действия с запасом хватает, чтобы удерживать протоны рядом.

Рис. 3. Сильное (ядерное) взаимоедйствие.

Важнейшая характеристика ядерных сил – малый радиус их действия, около $10^{-14} – 10^{-15}м$. На больших расстояниях интенсивность ядерного взаимодействия резко убывает. Именно эта особенность и определяет размеры атомных ядер.

Электромагнитное взаимодействие имеет бесконечный радиус действия потому, что его переносчики (фотоны) сами в нем не участвуют, имеют нулевую массу покоя и могут свободно переноситься от одной заряженной частицы к другой. Переносчики же Сильного взаимодействия (глюоны и составленные из них пионы) имеют массу и сами участвуют во взаимодействии, притягиваясь к испустившему их нуклону. В результате они не могут удалиться от нуклона на большие расстояния.

Что мы узнали?

Нуклоны внутри ядер удерживаются ядерными силами, которые в 100 раз сильнее кулоновских. Это взаимодействие особой природы, самое сильное из известных, поэтому оно называется Сильным. Его особенность – малый радиус действия, не превышающий размера атомного ядра.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий