Прямоугольный треугольник формулы

Содержание

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

imageS=12a⋅haПолупроизведение двух сторон на синус угла между ними.imageS=12a⋅b⋅sinαПо формуле Герона. S=p(p−a)(p−b)(p−c)p=a+b+c2

Равнобедренным называется треугольник, у которого две стороны равны.

Равнобедренный треугольник может быть остроугольным, прямоугольным и тупоугольным.

Свойства равноберенного треугольника:

  • В равнобедренном треугольнике углы при основании равны.
  • В равнобедренном треугольнике медиана, высота и биссектриса, проведенные к основанию, совпадают.

Равносторонним называется треугольник, у которого все стороны и все углы равны.

Площадь равностороннего треугольника находится по формуле S=a234

Высота равностороннего треугольника находится по формуле h=a32

Треугольник называется прямоугольным, если у него один из углов равен 90°.

Свойства прямоугольного треугольника:

  • Сумма двух острых углов треугольника равна 90°.
  • Катет, лежащий напротив угла в 30°, равен половине гипотенузы.
  • Если катет равен половине гипотенузы, он лежит напротив угла в 30°. a=c2c=2⋅a
  • Медиана, проведенная из вершины прямого угла, равна половине гипотенузы. m=c2
  • Пропорциональные отрезки в прямоугольном треугольнике a=m⋅cb=n⋅ch=m⋅n

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

c2=a2+b2

У прямоугольного треугольника катеты перпендикулярны друг другу, следовательно, площадь можно найти по формуле:

S=12a⋅b

Модуль геометрия: задания, связанные с треугольниками

Скачать домашнее задание к уроку 3.

В жизни нам часто придется сталкиваться с математическими задачами: в школе, в университете, а затем помогая своему ребенку с выполнением домашнего задания. Люди определенных профессий будут сталкиваться с математикой ежедневно. Поэтому полезно запоминать или вспоминать математические правила. В этой статье мы разберем одно из них: нахождение катета прямоугольного треугольника.

1 Что такое прямоугольный треугольник

Для начала вспомним, что такое прямоугольный треугольник. Прямоугольный треугольник – это геометрическая фигура из трех отрезков, которые соединяют точки, не лежащие на одной прямой, и один из углов этой фигуры равен 90 градусам. Стороны, образующие прямой угол, называются катетами, а сторона, которая лежит напротив прямого угла – гипотенузой.

2 Находим катет прямоугольного треугольника

Существует несколько способов, позволяющих узнать длину катета. Хотелось бы рассмотреть бы их подробнее.

Теорема Пифагора, чтобы найти катет прямоугольного треугольника

Если нам известны гипотенуза и катет, то мы можем найти длину неизвестного катета по теореме Пифагора. Звучит она так: “Квадрат гипотенузы равен сумме квадратов катетов”. Формула: c²=a²+b², где c – гипотенуза, a и b – катеты. Преобразовываем формулу и получаем: a²=c²-b².

Пример. Гипотенуза равна 5 см, а катет – 3 см. Преобразовываем формулу: c²=a²+b² → a²=c²-b². Далее решаем: a²=5²-3²; a²=25-9; a²=16; a=√16; a=4 (см).

Тригонометрические соотношения, чтобы найти катет прямоугольного треугольника

Также можно найти неизвестный катет, если известны любая другая сторона и любой острый угол прямоугольного треугольника. Есть четыре варианта нахождения катета при помощи тригонометрических функций: по синусу, косинусу, тангенсу, котангенсу. Для решения задач нам поможет таблица, которая находится чуть ниже. Рассмотрим эти варианты.

Найти катет прямоугольного треугольника при помощи синуса

Синус угла (sin) – это отношение противолежащего катета к гипотенузе. Формула: sin=a/c, где а – катет, лежащий против данного угла, а с – гипотенуза. Далее преобразуем формулу и получаем: a=sin*c.

Пример. Гипотенуза равна 10 см, угол А равен 30 градусов. По таблице вычисляем синус угла А, он равен 1/2. Затем по преобразованной формуле решаем: a=sin∠А*c; a=1/2*10; a=5 (см).

Найти катет прямоугольного треугольника при помощи косинуса

Косинус угла (cos) – это отношение прилежащего катета к гипотенузе. Формула: cos=b/c, где b – катет, прилежащий к данному углу, а с – гипотенуза. Преобразуем формулу  и получим: b=cos*c.

Пример. Угол А равен 60 градусов, гипотенуза равна 10 см. По таблице вычисляем косинус угла А, он равен 1/2. Далее решаем: b=cos∠A*c; b=1/2*10, b=5 (см).

Найти катет прямоугольного треугольника при помощи тангенса

Тангенс угла (tg) – это отношение противолежащего катета к прилежащему. Формула: tg=a/b, где а – противолежащий к углу катет, а b – прилежащий. Преобразуем формулу и получаем: a=tg*b.

Пример. Угол А равен 45 градусов, гипотенуза равна 10 см. По таблице вычисляем тангенс угла А, он равен Решаем: a=tg∠A*b; a=1*10; a=10 (см).

Найти катет прямоугольного треугольника при помощи котангенса

Котангенс угла (ctg) – это отношение прилежащего катета к противолежащему. Формула: ctg=b/a, где b – прилежащий к углу катет,  а – противолежащий. Иначе говоря, котангенс – это “перевернутый тангенс”. Получаем: b=ctg*a.

Пример. Угол А равен 30 градусов, противолежащий катет равен 5 см. По таблице тангенс угла А равен √3. Вычисляем: b=ctg∠A*a; b=√3*5; b=5√3 (см).

Итак, теперь вы знаете, как находить катет в прямоугольном треугольнике. Как видите, это не так уж и сложно, главное – запомнить формулы.

Гипотенуза — сторона в прямоугольном треугольнике, находящаяся напротив прямого угла. Две других стороны — катеты. В прямоугольном треугольнике гипотенуза всегда длиннее катетов.

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов (формула: c² = a² + b², где c — гипотенуза, a и b — катеты). Очень часто для вычисления гипотенузы используется именно эта теорема.

Как найти гипотенузу?

Как найти гипотенузу, зная катеты?

Если известны оба катета (две другие стороны прямоугольного треугольника), можно применить Теорему Пифагора.

Теорема Пифагора — в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Формула: c² = a² + b² (при c — гипотенуза, a и b — катеты).

Например:

Один катет равен 3 см, другой — 4 см. Таким образом, а = 3, b = 4, подставляем в формулу:

c² = 3² + 4² <=> c² = 9 + 16 <=> c² = 25 <=> c = √25 <=> c = 5.

Ответ: длина гипотенузы 5 см (или x = 5).

Как найти катет в прямоугольном треугольнике

По той же формуле можно найти и длину одного неизвестного катета, нужно только немного её изменить:

Начальная формула: c² = a² + b² (при c — гипотенуза, a и b — катеты), и найти катет можно по этой:

(c — гипотенуза, a и b — катеты)

Например: Один катет равен 3 см, а гипотенуза — 5 см. Нужно узнать длину второго катета.

Применяем формулу b = √c² — a² ⇔

b = √5² — 3² ⇔ b = √25 — 9 ⇔ b = √16 ⇔ b = 4.

Как найти гипотенузу, зная катет и угол?

Если есть противолежащий катет — теорема синусов

Если в условии задачи дан угол и противолежащий катет, то ищем гипотенузу по Теореме синусов: стороны треугольника пропорциональны синусам противолежащих углов.

Примечание: гипотенуза есть только в прямоугольном треугольнике, однако теорему синусов можно применять к любым треугольникам (не только к прямоугольным).

Формула:

Например:

Известна одна сторона треугольника 𝐴𝐶 = √2 и ∠β = 45º.

∠α = 90º (т.к. мы ищем гипотенузу, то второй угол в треугольнике прямой, значит имеет 90º).

Так как во всех треугольниках сумма всех углов равна 180º, то можем узнать оставшийся ∠c.

Значит: ∠c = 180º — (90º + 45º) = 45º.

Подставляем в формулу (a/sinα = b/sinβ = c/sinγ) известные:

BC/sin90º = AC/sin45º = AB/sin45º

В таблице вы найдёте значения для синуса:

sin 45º √2/2
sin 60º √3/2
sin 90º 1

В условии задачи нам дано: 𝐴𝐶 = √2, значит:

BC/sin90º = √2/sin45º = AB/sin45º

Подставляем значения синуса из таблицы:

BC/1 = √2/(√2/2) = AB/(√2/2) (забудем на время про катет AB) ⇔

BC = √2/(√2/2) ⇔ BC = 2 (гипотенуза равна 2)

Если хотите вычислить катет, уже зная другой катет и гипотенузу:

AB/(√2/2) = 2 ⇔ AB = √2

Ответ: гипотенуза BC равна 2 см, а катет AB √2 см.

Если есть прилежащий катет — по косинусу

Если в условии задачи дан угол и прилежащий катет, то ищем гипотенузу по косинусу (в прямоугольном треугольнике, косинус острого угла (cos) — это отношение прилежащего катета (b) к гипотенузе(c), таким образом cos a = b/c, из этого получается c = b / cos α).

Т.е. гипотенуза (c) = прилежащий катет (b) / косинус угла или c = b / cos α.

Например:

Известна одна сторона треугольника AB = 1 и ∠β = 45º. Нужно вычислить гипотенузу (BC).

Помним, что гипотенуза (c) = прилежащий катет (b) / косинус угла или c = b / cos α. Т.е.: BC = AB / cosβ ⇔ BC = 1/ cos 45º.

Смотрим в таблице, чему равен cos 45º.

BC = 1/ (√2/2) = √2

Ответ: гипотенуза BC равна √2 см.

Как найти гипотенузу равнобедренного треугольника

В равнобедренном треугольнике есть гипотенуза только в том случае, если он одновременно и прямоугольный, т.к. гипотенуза есть только в прямоугольных треугольниках (и его основание будет гипотенузой).

Чтобы найти такую гипотенузу, нужно любой из двух одинаковых катетов возвести в квадрат, умножить на 2 и посчитать квадратный корень: b = √2a² (где b — гипотенуза, а — катет). Это следствие из теоремы Пифагора.

Например:

Катет равнобедренного треугольника равен 7см. Нужно найти гипотенузу.

Формула b = √2a². Подставляем:

b = √2*7² = √2*49 ≈ √98 ≈ 9.899

Если забудете эту формулу, можно использовать уже знакомую формулу Пифагора для гипотенузы (c² = a² + b²):

c² = a² + b²

c² = 7² + 7²

c² = 49 + 49

c² = 98

c = √98

c ≈ 9.899

Ответ: гипотенуза равна 9.899.

Узнайте больше про Теорему Пифагора, Теорему косинусов, а также, что такое Тангенс и Аксиома.

Задача нахождения площади треугольника довольно распространена не только в науке, но и в быту. Для вас мы разработали 21 калькулятор для нахождения площади любого треугольника — равнобедренного, равностороннего, прямоугольного или обыкновенного.

Содержание

Площадь треугольника

Площадь треугольника через две стороны и угол между ними

{S= dfrac{1}{2} cdot a cdot b cdot sin (alpha)}

Формула для нахождения площади треугольника через 2 стороны и угол:

{S= dfrac{1}{2} cdot a cdot b cdot sin (alpha)}, где a, b — стороны треугольника, α — угол между ними.

Площадь треугольника через основание и высоту

{S= dfrac{1}{2} cdot a cdot h}

Формула для нахождения площади треугольника через основание и высоту:

{S= dfrac{1}{2} cdot a cdot h}, где a — основание треугольника, h — высота треугольника.

Площадь треугольника через радиус описанной окружности и 3 стороны

{S= dfrac{a cdot b cdot c}{4 cdot R}}

Формула для нахождения площади треугольника через описанную окружность и стороны:

{S= dfrac{a cdot b cdot c}{4 cdot R}}, где a, b, c — стороны треугольника, R — радиус описанной окружности.

Площадь треугольника через радиус вписанной окружности и 3 стороны

{S= r cdot dfrac{a + b + c}{2}}

Формула для нахождения площади треугольника через вписанную окружность и стороны:

{S= r cdot dfrac{a + b + c}{2}}, где a, b, c — стороны треугольника, r — радиус вписанной окружности.

Формулу можно переписать иначе, если учитывать, что {dfrac{a + b + c}{2}} — полупериметр треугольника. В этом случае формула будет выглядеть так: S = {r cdot p}, где p — полупериметр треугольника.

Площадь треугольника через сторону и два прилежащих угла

{S= dfrac{a^2}{2} cdot dfrac{sin(alpha) cdot sin(beta)}{sin(gamma)}}{gamma = 180 — (alpha + beta)}

Формула для нахождения площади треугольника через сторону и 2 прилежащих угла:

{S= dfrac{a^2}{2} cdot dfrac{sin(alpha) cdot sin(beta)}{sin(gamma)}}, где a — сторона треугольника, α и β — прилежащие углы, γ — противолежащий угол, который можно найти по формуле:

{gamma = 180 — (alpha + beta)}

Площадь треугольника по формуле Герона

{S= sqrt{p cdot (p-a) cdot (p-b) cdot (p-c)}}{p= dfrac{a+b+c}{2}}

Формула для нахождения площади треугольника по формуле Герона (если известны 3 стороны):

{S= sqrt{p cdot (p-a) cdot (p-b) cdot (p-c)}}, где a, b, c — стороны треугольника, p — полупериметр треугольника, который можно найти по формуле p = {dfrac{a + b + c}{2}}

Площадь прямоугольного треугольника

Площадь прямоугольного треугольника через 2 стороны

{S= dfrac{1}{2} cdot a cdot b}

Формула для нахождения площади прямоугольного треугольника по двум сторонам:

{S= dfrac{1}{2} cdot a cdot b}, где a, b — стороны треугольника.

Площадь прямоугольного треугольника через гипотенузу и острый угол

{S= dfrac{1}{4} cdot c^2 cdot sin (2 alpha)}

Формула для нахождения площади прямоугольного треугольника по гипотенузе и острому углу:

{S= dfrac{1}{4} cdot c^2 cdot sin (2 alpha)}, где c — гипотенуза треугольника, α — любой из прилегающих острых углов.

Площадь прямоугольного треугольника через катет и прилежащий угол

{S= dfrac{1}{2} cdot a^2 cdot tg (alpha)}

Формула для нахождения площади прямоугольного треугольника по катету и прилежащему углу:

{S= dfrac{1}{2} cdot a^2 cdot tg (alpha)}, где a — катет треугольника, α — прилежащий угол.

Площадь прямоугольного треугольника через радиус вписанной окружности и гипотенузу

{S= r cdot (r + c)}

Формула для нахождения площади прямоугольного треугольника по радиусу вписанной окружности и гипотенузе:

{S= r cdot (r+c)}, где c — гипотенуза треугольника, r — радиус вписанной окружности.

Площадь прямоугольного треугольника через вписанную окружность

{S= c_{1} cdot c_{2}}

Формула для нахождения площади прямоугольного треугольника по вписанной окружности:

{S= c_{1} cdot c_{2}}, где c1 и c2 — части гипотенузы.

Площадь прямоугольного треугольника по формуле Герона

{S= (p-a) cdot (p-b)}{p= dfrac{a+b+c}{2}}

Формула Герона для прямоугольного треугольника выглядит так:

{S= (p-a) cdot (p-b)}, где a, b — катеты треугольника, p — полупериметр прямоугольного треугольника, который рассчитывается по формуле p = {dfrac{a + b + c}{2}}

Площадь равнобедренного треугольника

Площадь равнобедренного треугольника через основание и сторону

{S=dfrac{b}{4} sqrt{4 cdot a^2-b^2}}

Формула площади равнобедренного треугольника через основание и сторону:

{S=dfrac{b}{4} sqrt{4 cdot a^2-b^2}}, где a — боковая сторона треугольника, b — основание треугольника

Площадь равнобедренного треугольника через основание и угол

{S=dfrac{1}{2} cdot a cdot b cdot sin( alpha)}

Формула площади равнобедренного треугольника через основание и угол:

{S=dfrac{1}{2} cdot a cdot b cdot sin( alpha)}, где a — боковая сторона треугольника, b — основание треугольника, α — угол между основанием и стороной.

Площадь равнобедренного треугольника через основание и высоту

{S=dfrac{1}{2} cdot b cdot h}

Формула площади равнобедренного треугольника через основание и высоту:

{S=dfrac{1}{2} cdot b cdot h}, где b — основание треугольника, h — высота, проведенная к основанию.

Площадь равнобедренного треугольника через боковые стороны и угол между ними

{S=dfrac{1}{2} cdot a^2 cdot sin(alpha)}

Формула площади равнобедренного треугольника через боковые стороны и угол между ними:

{S=dfrac{1}{2} cdot a^2 cdot sin(alpha)}, где a — боковая сторона треугольника, α — угол между боковыми сторонами.

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами

{S=dfrac{b^2}{4 cdot tg dfrac{alpha}{2}}}

Формула площади равнобедренного треугольника через основание и угол между боковыми сторонами:

{S=dfrac{b^2}{4 cdot tg dfrac{alpha}{2}}}, где b — основание треугольника, α — угол между боковыми сторонами.

Площадь равностороннего треугольника

Площадь равностороннего треугольника через радиус описанной окружности

{S= dfrac{3 sqrt{3} cdot R^2}{4}}

Формула площади равностороннего треугольника через радиус описанной окружности:

{S= dfrac{3 sqrt{3} cdot R^2}{4}}, где R — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности

{S= 3 sqrt{3} cdot r^2}

Формула площади равностороннего треугольника через радиус вписанной окружности:

{S= 3 sqrt{3} cdot r^2}, где r — радиус вписанной окружности.

Площадь равностороннего треугольника через сторону

{S= dfrac{sqrt{3} cdot a^2}{4}}

Формула площади равностороннего треугольника через сторону:

{S= dfrac{sqrt{3} cdot a^2}{4}}, где a — сторона треугольника.

Площадь равностороннего треугольника через высоту

{S= dfrac{h^2}{sqrt{3}}}

Формула площади равностороннего треугольника через высоту:

{S= dfrac{h^2}{sqrt{3}}}, где h — высота треугольника.

Просмотров страницы: 370343

Как найти площадь любого треугольника

Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.

В Telegram-канале «Лайфхакер» только лучшие тексты о технологиях, отношениях, спорте, кино и многом другом. Подписывайтесь!

В нашем Pinterest только лучшие тексты об отношениях, спорте, кино, здоровье и многом другом. Подписывайтесь!

Зная сторону и высоту

  1. Умножьте сторону треугольника на высоту, проведённую к этой стороне.
  2. Поделите результат на два.

image

  • S — искомая площадь треугольника.
  • a — сторона треугольника.
  • h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.

Зная две стороны и угол между ними

  1. Посчитайте произведение двух известных сторон треугольника.
  2. Найдите синус угла между выбранными сторонами.
  3. Перемножьте полученные числа.
  4. Поделите результат на два.

image

  • S — искомая площадь треугольника.
  • a и b — стороны треугольника.
  • α — угол между сторонами a и b.

Зная три стороны (формула Герона)

  1. Посчитайте разности полупериметра треугольника и каждой из его сторон.
  2. Найдите произведение полученных чисел.
  3. Умножьте результат на полупериметр.
  4. Найдите корень из полученного числа.

image

  • S — искомая площадь треугольника.
  • a, b, c — стороны треугольника.
  • p — полупериметр (равен половине от суммы всех сторон треугольника).

Зная три стороны и радиус описанной окружности

  1. Найдите произведение всех сторон треугольника.
  2. Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.

image

  • S — искомая площадь треугольника.
  • R — радиус описанной окружности.
  • a, b, c — стороны треугольника.

Зная радиус вписанной окружности и полупериметр

Умножьте радиус окружности, вписанной в треугольник, на полупериметр.

image

  • S — искомая площадь треугольника.
  • r — радиус вписанной окружности.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Как найти площадь прямоугольного треугольника

  1. Посчитайте произведение катетов треугольника.
  2. Поделите результат на два.

image

  • S — искомая площадь треугольника.
  • a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.

Как найти площадь равнобедренного треугольника

  1. Умножьте основание на высоту треугольника.
  2. Поделите результат на два.

image

  • S — искомая площадь треугольника.
  • a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
  • h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.

Как найти площадь равностороннего треугольника

  1. Умножьте квадрат стороны треугольника на корень из трёх.
  2. Поделите результат на четыре.

image

  • S — искомая площадь треугольника.
  • a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий