Плотность Земли. Изучение планеты

image

Внутренняя структура Земли [вместе с ее составом] является одним из первых предметов, которые учащиеся изучают в школе по географии / геологии. Это дает нам приблизительное представление о далеком прошлом Земли и о том, как жизнь, как мы знаем сегодня, появилась на этой планете.

Поскольку невозможно непосредственно наблюдать глубины планеты, наше текущее понимание этого вопроса полностью основано на топографических исследованиях поверхности и анализе вулканических выбросов и сейсмических волн.

Землю можно просто разделить на три слоя: кору, мантию и ядро, но другие слои также распознаются благодаря своим уникальным химическим свойствам и плотности. Ниже приведены важные слои земли, которые вы должны знать.

Земная кора

image
Схема среза внутренней структуры земли | Изображение предоставлено USGS

Кора — это самый внешний слой земли, глубина которого колеблется от 5 до 70 км. Земная кора состоит из трех основных типов камней; магматические, осадочные и метаморфические наиболее распространенные из магматических (гранит и базальт).

Корка делится на два типа; океаническая кора и континентальная кора. Линия или граница, которая разделяет эти два, называется разрывом Конрада.

Океаническая кора

Океаническая кора простирается от 5 до 10 км ниже морского дна. Он в основном состоит из мафических пород (базальт) и часто упоминается как Сима (силикат магния). Плотность океанической коры составляет около 3 г / см3.

Океаническая кора непрерывно формируется в середине океанических хребтов в процессе, называемом распространением морского дна. Когда магма поднимается из разлома, она распространяется и постепенно остывает, превращаясь в новую океаническую кору. Возраст океанической коры можно определить по ее удаленности от срединно-океанических хребтов.

Этому процессу противостоит разрушение океанической коры в зонах субдукции. Зона субдукции — это место, где одна плита (как океаническая, так и континентальная) подчинена мантии вышележащей плитой.

Из-за этой «переработки» океанической коры они намного моложе континентальной коры. Самой древней сохранившейся океанической коре около 340 миллионов лет, в то время как континентальной коре в некоторых регионах столько же лет, сколько и самому возрасту Земли.

Континентальный разлом

Континентальная кора полностью состоит из скалистых пород, таких как гранит. Он толще (30-50 км), чем океаническая кора, но также менее плотен (2,7 г / см3). Как и океаническая кора, континентальная кора образована тектоникой плит, но гораздо менее разрушена.

Верхняя мантия

Прямо под земной корой лежит мантия, которая разделена на два основных слоя; верхняя и нижняя мантия. Мантия в целом составляет около 84% объема земли.

Расчетная глубина верхней мантии составляет около 640 км, а всей мантии (включая нижнюю мантию) — ок. Глубина 2900 км.

Граница, которая отделяет земную кору от верхней мантии, называется разрывом Мохоровича (для краткости Мохо), однако она не обнаружена на одинаковой глубине. Мохо был обнаружен хорватским сейсмологом Андрией Мохоровичем в 1909 году.

В этом слое расположены две механически разные области, а именно литосфера и астеносфера.

Литосфера

Литосфера — это твердый и жесткий слой земли, который включает в себя кору и самый верхний участок верхней мантии. Литосфера бывает двух типов; континентальная литосфера (расширение континентальной коры) и океаническая литосфера.

Континентальная литосфера состоит в основном из фельсиковых пород (пород с высоким содержанием кремнезема). Океаническая литосфера, с другой стороны, почти полностью состоит из перидотита (ультрамафитовой породы с низким содержанием кремнезема) и более плотной, чем континентальная литосфера.

Астеносфера

Астеносфера показана на границе субдукции

Под литосферой лежит гораздо более плотный и механически слабый слой астеносферы. Хотя этот слой обычно располагается где-то между глубинами 80 и 200 км, в некоторых регионах он может простираться на 700 км ниже поверхности Земли.

Давление и температура в астеносфере настолько высоки, что породы становятся полурасплавленными. Интересно, что астеносфера гораздо более пластична, чем нижняя мантия, где температура намного выше. Граница литосферы и астеносферы (LAB) — это то, что разделяет два слоя, а его глубина определяется очевидными изменениями химических и термических свойств горных пород.

И литосфера, и астеносфера связаны с тектоникой плит — геонаучной теорией, которая описывает движение литосферных блоков, известных как тектонические плиты.

Проще говоря, жесткая астеносфера «плавает» на вершине пластичной астеносферы, заставляя тектонические плиты двигаться. Геологические виды деятельности, такие как землетрясения и извержения вулканов, обычно связаны с тектоникой плит.

Переходная зона

Переходная зона представляет собой отчетливый слой в мантии Земли между глубинами 410 км и 660 км ниже поверхности. Здесь из-за высокой температуры и давления породы становятся более плотными и претерпевают структурные изменения (кристаллизация).

Исследования показали, что переходная зона мантии содержит столько же воды, сколько и океаны Земли. Однако вода существует там только в форме гидроксид-ионов. На глубинах 525-660 км гидроксид-ионы улавливаются минералами из оливина, такими как вадслиит и рингвудит.

Нижняя мантия

Между переходной зоной и ядром лежит нижняя мантия. Он простирается от 660 км до примерно 2900 км ниже поверхности Земли. Температура в нижней мантии колеблется от 1900 до 2630 К, в зависимости от глубины. Хотя эта область намного горячее и плотнее верхней мантии, она гораздо менее пластична.

Нижняя мантия в основном состоит из минералов, таких как кальциево-силикатный перовскит и ферропериклаз, оба происходят из рингвудита.

На основе сейсмической модели Предварительная эталонная Земля (PREM) нижняя мантия может быть разделена на три секции; самая верхняя нижняя мантия, средне-нижняя мантия и слой D ”.

Граница Ядро-Мантия

Граница ядро-мантия — это место, где богатая силикатами нижняя мантия взаимодействует с никель-железным внешним ядром. Он расположен примерно на 2890 км ниже земной поверхности и соответствует скачкам сейсмической скорости. Граница также известна как разрыв Гутенберга.

Ядро

Внутренняя структура Земли

Ядро Земли — самая горячая и самая плотная часть нашей планеты. Считается, что он почти полностью состоит из Никла и Айрон. Ядро делится на два слоя; твердое внутреннее ядро и жидкое внешнее ядро, а граница, разделяющая эти две области, называется разрывом по Буллену.

Внешнее ядро

Внешнее ядро простирается от 2900 км до примерно 5150 км ниже поверхности Земли. Несмотря на то, что точную температуру ядра Земли практически невозможно измерить, по оценкам, она находится где-то между 3000 К и 4500 К вблизи ее верхних областей. Он может подняться до 8000 К вблизи своей границы с внутренним ядром.

Иллюстрация динамо-механизма

Внешнее ядро, по-видимому, имеет очень низкую вязкость, что вызывает сильную конвекцию в этой области. Согласно теории динамо, жидкое никель-железное внешнее ядро ​​- то, что питает магнитное поле Земли. Средняя напряженность магнитного поля внешнего ядра (2,5 миллисела) примерно в 50 раз выше, чем у поверхности.

Внутреннее ядро

В отличие от жидкого внешнего ядра, внутреннее ядро ​​Земли является твердым и имеет общий радиус 1220 км. Его расчетная температура близка к 5700 К, аналогично температуре внешней поверхности Солнца. Хотя температуры во внутреннем ядре намного превышают температуру плавления железа, он остается твердым из-за сильного давления, оказываемого остальной частью земли.

Поскольку внутреннее ядро ​​соединено с жидким внешним ядром, оно может вращаться с несколько иной скоростью, чем остальные. Эта теория была подтверждена исследованием, проведенным в 2005 году.

Анализируя разрывы в сейсмических волнах, исследователи смогли сделать вывод, что внутреннее ядро ​​Земли фактически вращается быстрее, чем остальная часть Земли, примерно на 0,3–0,5 градуса в год, что в 50 000 раз превышает тектоническое движение плиты.

Внутреннее ядро ​​растет примерно на 1 мм / год. Поскольку тепло от внешнего ядра передается в мантию, это заставляет внутреннюю часть жидкой области замерзать или затвердевать, а внутреннее ядро ​​толкаться вверх.

Внутреннее Внутреннее Ядро

В 2015 году, изучая эхо землетрясений, исследователи получили ранее неизвестные сведения о внутреннем ядре Земли. Исследование предполагает, что есть внутренний слой во внутреннем ядре. Он дублирован как внутреннее внутреннее ядро. Этот слой отличается от внутреннего ядра так же, как внутреннее ядро отличается от внешнего ядра.

Земля кажется ее обитателям огромным и необъятным миром. Однако в сравнении с другими космическими телами размера земного шара не очень велики.

Главный параметр, характеризующий размер планеты – это ее радиус. У Земли он равен 6371 км. Но это среднее значение, на самом деле радиус меньше в полярных областях, где он составляет 6357 км, и больше на экваторе, где его величина достигает 6378 км. Такое различие, называемое полярным сжатием планеты, связано с ее вращением. Экваториальные области находятся на большем расстоянии от оси Земли и потому испытывают большее центростремительное ускорение, которого и искажает форму планеты.

Зная радиус, легко найти остальные размеры планеты. Для этого достаточно использовать геометрические формулы для расчета сферы. Диаметр Земли вдвое больше радиуса и составляет 12742 км. Далее можно оценить и площадь, она оказывается равной 510 млн кв. км. Из них на сушу приходится только 149 млн кв. км, то есть около 29% земной поверхности. Объем нашей планеты составляет 1083 млрд куб. км.

Массу планеты так легко определить не получится. Для ее определения необходимо точно знать величину ускорения свободного падения и использовать закон всемирного тяготения. По расчетам выходит, что масса Земли составляет 5,97•1024 кг. Кажется что это огромная цифра, но на самом деле наша планета в 333 тыс. раз легче Солнца. При этом ее объем меньше солнечного уже в 1,3 млн раз. Такая разница связана с тем, что плотность Земли значительно меньше, чем у Солнца.

Сравнение размеров планет Солнечной системы от наибольшей к наименьшей слева направо, сверху вниз: Юпитер, Сатурн, Уран, Нептун, Земля, Венера, Марс, Меркурий) / Wikimedia Commons

В Солнечной системе по своим размерам Земля занимает пятое место. Она уступает по габаритам всем планетам-гигантам, находящимся за пределами пояса астероидов, причем уступает очень сильно. Так, Уран, самый легкий из гигантов, тяжелее Земли 14,5 раз. Вместе с тем Земля обгоняется по размерам все остальные планеты, именуемые планетами земной группы. Если Венера весьма близка по габаритам к Земле, то Марс легче ее в 9 раз, а Меркурий – уже в почти в 20 раз.

Список использованных источников

• https://natworld.info/raznoe-o-prirode/forma-razmery-i-geodezija-planety-zemlja • https://spaceworlds.ru/solnechnaya-sistema/planeta-zemlja/razmer-zemli.html
Не нашли, то что искали? Используйте форму поиска по сайту

Несмотря на недоступность недр Земли для непосредственных исследований, распределение плотности вещества в мантии и земном ядре удаётся определить достаточно надёжно по данным о скоростях распространения в этих геосферах сейсмических волн от землетрясений. Впервые разработанная К. Булленом (1958, 1966) такая методика впоследствии была существенно усовершенствована им и другими исследователями за счёт привлечения дополнительной информации о моменте инерции и свободных колебаниях Земли, что значительно повысило достоверность определений.В основе методики определения распределения плотности в Земле лежат известные уравнения гидростатики и термодинамические соотношения, связывающие радиальные градиенты плотности в среде с сейсмическими параметрами среды. В связи с тем что скорости сейсмических волн с глубиной обычно возрастают, интерпретация сейсмических годографов с целью определения зависимостей этих скоростей от глубины проводится по методике Герглотца-Вихерта, специально разработанной для исследования градиентных сред. Найденные таким путём распределения скоростей продольных и поперечных сейсмических волн в Земле приведены на рис. 11.

Рисунок 11. Скорости распространения продольных νp и поперечных νs, сейсмических волн в Земле

Наиболее характерной чертой распределения сейсмических скоростей в Земле является резкое и значительное падение скорости продольных волн в земном ядре. Объясняется это тем, что скорость распространения продольных волн зависит не только от модуля всестороннего сжатия, но и от модуля сдвига, который во внешнем, жидком земном ядре обращается в ноль.По этой же причине через жидкое вещество внешнего ядра не могут распространяться и поперечные волны.Уравнения, связывающие между собой значения сейсмических скоростей с параметрами среды, позволяют определять лишь градиенты плотности, поэтому для построения самой зависимости плотности от глубины приходится задаваться граничным значением плотности на поверхности Земли р0 = 3,32 г/см3. При этом «сшивку» решений, получаемых для отдельных геосфер (например, для ядра и нижней мантии), производят по условию непрерывности давления на границах этих геосфер, а значения плотности в них подбирают таким образом, чтобы расчётные значения массы и момента инерции Земли совпадали бы с их измеренными значениями М= 5,977×1027 г и I = 0,8038×1045 г×см2 при среднем радиусе Земли R = 6 371 км. Дополнительные уточнения в распределение плотности с глубиной, особенно в переходном слое Голицына, позволяют внести данные о частотном спектре собственных колебаний Земли, возбуждаемых сильными землетрясениями.Используя описанную методику К. Буллен (1966, 1969), В.Н. Жарков (1971), А. Дзивонский и др. (1975) построили наиболее известные и популярные в настоящее время модели распределения плотности в Земле, изображённые на рис. 13. На этом же рисунке для сравнения приведены распределения плотности, построенные Л. М. Наймарком и О. Г. Сорохтиным (1977) по данным ударного сжатия вещества для модели Земли с лерцолитовым составом мантии, окисно-железным внешним и железоникелевым внутренним ядром, при адиабатическом распределении температуры в земных недрах, а также распределение плотности в первичной, ещё не дифференцированной Земле.

Рисунок 13. Распределение плотности в разных моделях Земли:1 — модель Наймарка-Сорохтина (1977а); 2 — модель Жаркова «Земля-2» (Жарков и др., 1971); 3 — модель Буллена А1 (1966); 4 — модель Буллена А2 (1966); 5 — модель первичной Земли Наймарка — Сорохтина (1977б).

Как видно из рис. 13, плотность верхней мантии начиная от значения 3,2 г/см3 на поверхности постепенно возрастает с глубиной вследствие сжатия её вещества. Начиная с глубины 400 км плотность увеличивается более резко и скачкообразно (на рис. 13 эти скачки плотности не показаны). С глубины приблизительно 900 км градиент плотности вновь снижается и далее плотность монотонно возрастает до 5,6 г/см3 на подошве мантии. Резкое увеличение градиента плотности в переходном слое мантии (в слое С), как уже отмечалось, связано с происходящими на этих глубинах полиморфными переходами мантийного вещества в более плотные фазы: оливина — в шпинелевую фазу, пироксена — в ильменитовую и далее в перовскитовую и т.д. В противоположность этому в нижней мантии существенных перестроек кристаллическом строении вещества больше не происходит, поскольку все окислы в этой геосфере уже находятся в состоянии предельно плотной упаковки атомов и сжатие мантийного вещества происходит только благодаря сжатию самих атомов.На глубине около 2 900 км плотность в Земле скачком увеличивается почти в два раза: примерно с 5,6 г/см3 на подошве мантии до 9,5-10 г/см3 на поверхности ядра, убедительно свидетельствуя тем самым о резкой смене химического состава земного вещества на этом уровне. В ядре плотность вещества вновь монотонно возрастает. В некоторых моделях строения Земли предполагается, что между внешним и внутренним ядром на уровне слоя F происходит ещё один, правда, менее значительный скачок плотности, также свидетельствующий об изменении на этой глубине состава «ядерного» вещества или его фазового состояния. Наконец, последний заметный скачек плотности должен наблюдаться на глубине около 5 150 км, отмечающий собой переход от внешней жидкой оболочки земного ядра к его внутренней твёрдой сердцевине. По нашим оценкам, на этой границе плотность «ядерного» вещества скачком меняется от 11,4-12,3 до 12,5-13,4 г/см3 (т.е. на 8-10%) и в центре Земли достигает 13,5-14,4 г/см3. Если известен или предполагается химический состав земного вещества, то оказывается возможным построить и модельное распределение плотности в земных недрах, используя для этого экспериментальные данные по ударному сжатию главных породообразующих окислов и металлов. Этот путь интересен тем, что позволяет, с одной стороны, независимым способом определить значения плотности вещества в Земле, а с другой стороны, проверить правильность сделанных предположений о химическом составе нашей планеты. Кроме того, подобрав в соответствии с сейсмическими данными состав геосфер современной Земли и задавшись основными закономерностями её дифференциации, использование этого метода позволяет определять распределение плотности в Земле на любом этапе её эволюции. На рис. 13 и 14 для сравнения приведено распределение плотности в первичной (недифференцированной) Земле. В настоящее время методика определения плотности силикатов, окислов и металлов при высоких давлениях и температурах по данным ударного сжатия образцов вещества разработана достаточно полно и подробно описана в специальных работах (Альтшулер, 1965; Жарков, Калинин, 1968; и др.). Точность определения зависимости плотности от давления и температуры (уравнения состояния вещества) по данным ударного сжатия обычно лежит в пределах 2-3%, что для большинства геофизических задач является вполне приемлемой.

Рисунок 14. Принятое распределение плотности в современной и первичной Земле

Рисунок 10. Распределение плотности в мантии Земли по разным моделям:1 — модель Наймарка-Сорохтина (1977а); 2 — модель Буллена А1 (1966); 3 — модель Жаркова «Земля-2» (Жарков и др., 1971); 4 — пересчёт данных Панькова и Калинина (1975) на состав лерцолитов при адиабатическом распределении температуры.

Рисунок 15. Распределение давления (1) и ускорения силы тяжести (2) в Земле

Как видно из сопоставления расчёта плотности лерцолитовой мантии (см. рис. 10), окисно-железного внешнего и железоникелевого внутреннего ядра (см. рис. 13) с наиболее популярными распределениями плотности в Земле, построенными по сейсмическим данным, принятая нами модель химического состава Земли неплохо соответствует общепринятым плотностным моделям её строения. Отсюда можно заключить, что рассматриваемая модель состава Земли также неплохо отражает реальную ситуацию в её недрах. При этом следует обратить внимание на примечательный результат расчётов: плотность океанических лерцолитов, обнажающихся прямо на поверхности Земли в трансформных разломах океанических рифтовых зон, при высоких давлениях и адиабатической температуре с большой точностью совпадает с определённой по независимым сейсмическим данным плотностью вещества в нижней мантии. Причём такое совпадение получается без всяких предположений об изменении химического состава лерцолитов с глубиной! Это очень важный результат. Он убедительно свидетельствует о том, что химический состав всей мантии в целом (верхней и нижней) в среднем одинаков.Такой результат расчётов может быть объяснён лишь существованием в мантийной оболочке Земли конвективных движений, эффективно перемешивающих вещество всей мантии. При этом, правда, необходимо учитывать, что, несмотря на одинаковый средний состав мантии по всей её толще, локальные плотностные неоднородности, не превышающие, однако 0,1-0,15 г/см3, безусловно, существуют в этой геосфере. Более того, именно благодаря таким плотностным неоднородностям и развиваются конвективные движения в мантии, а сами неоднородности постоянно генерируются процессом дифференциации мантийного вещества на поверхности земного ядра и погружениями по зонам субдукции холодных литосферных плит в глубины горячей мантии.Другим важным следствием, вытекающим из рассмотренной плотностной модели Земли, построенной по заданному составу её оболочек, является вывод о том, что внешнее ядро Земли может состоять из окиси одновалентного железа Fe2O (или сплава Fe×FeO), а внутреннее ядро — из сплава железа с никелем Fe0,9×Ni0,1. Ядро Земли в этой модели характеризуется следующими параметрами: масса Mc = (1,94±0,01)×1027 г; объем Vc = 0,180×1027 см ; давление на поверхности ядра рс = 1,34 Мбар; давление в центре Земли р0 = 3,7 Мбар; средняя плотность ядра рс = 10,6 г/см3. Результаты расчёта принятой нами плотностной модели Земли приведены в табл. 2.

Таблица 2. Распределения плотности, температуры, давления и ускорения силы тяжести в современной ЗемлеПри расчёте распределений плотности, ускорения силы тяжести и давления использовались основные параметры: масса Земли М = 5,9771×1027 г и безразмерный момент инерции сферической Земли J = 0,33053.
Глубина, км Плотность, г/см3 Температура, К Давление, кбар Ускорение силы тяжести, см/с2 Глубина, км Плотность, г/см3 Температура, К Давление, кбар Ускорение силы тяжести, см/с2
2,85 288 981 2886 5,60 3130 1384 1067
200 3,30 1770 65,5 990 2886 9,92
430 3,60 1940 138 997 3000 10,06 3310 1503 1041
430 3,82 2010 3400 10,60 3880 1909 945
600 4,09 2130 218,6 1000 3800 11,06 4400 2287 841
670 4,16 2170 247,2 1001 4200 11,43 4870 2628 732
670 4,37 2110 4600 11,72 5280 2926 622
800 4,49 2170 305,7 1000 5000 11,97 5620 3175 517
1000 4,61 2260 397,7 996 5120 12,04 5710 3242 490
1200 4,72 2360 491,7 994 5120 13,00
1400 4,83 2450 587,8 993 5400 13,10 5890 3382 386
1600 4,94 2540 686 993 5800 13,23 6060 3518 227
1800 5,04 2640 786,3 995 6000 13,27 6110 3559 155
2200 5,25 2820 994,9 1006 6200 13,29 6140 3580 68
2600 5,45 3010 1216,2 1033 6371 13,29 6140 3583

Информация:

— Следующая статья   |   О. Г. Сорохтин: «Развитие Земли»

  • Главная
  • Литература
  • Естествознание и основы экологии
  • 3. Внутреннее строение и рельеф земли
  • § 17. Физические свойства и химический состав земли

Навигация: Начало В  В  Оглавление В  В  Другие книги В  В 

§ 17. Физические свойства и химический состав земли

К физическим свойствам Земли относят температурный режим (внутреннюю теплоту), плотность и давление.

Внутренняя теплота Земли. В По современным представлениям Земля после ее образования была холодным телом. Затем распад радиоактивных элементов постепенно разогревал ее. Однако в результате излучения тепла с поверхности в околоземное пространство происходило ее охлаждение. Образовались относительно холодная литосфера и земная кора. На большой глубине и сегодня высокие температуры. Рост температур с глубиной можно наблюдать непосредственно в глубоких шахтах и буровых скважинах, при извержении вулканов. Так, изливающаяся вулканическая лава имеет температуру 1200–1300В °C.

На поверхности Земли температура постоянно изменяется и зависит от притока солнечного тепла. Суточные колебания температур распространяются до глубины 1–1,5В м, сезонные – до 30В м. Ниже этого слоя лежит зона постоянных температур, где они всегда остаются неизменными и соответствуют среднегодовым температурам данной местности на поверхности Земли.

Глубина залегания зоны постоянных температур в разных местах неодинакова и зависит от климата и теплопроводности горных пород. Ниже этой зоны начинается повышение температур, в среднем на 30В °C через каждые 100В м. Однако величина эта непостоянна и зависит от состава горных пород, наличия вулканов, активности теплового излучения из недр Земли. Так, в России она колеблется от 1,4В м в Пятигорске до 180В м на Кольском полуострове.

Зная радиус Земли, можно подсчитать, что в центре ее температура должна достигать 200 000В °C. Однако при такой температуре Земля превратилась бы в раскаленный газ. Принято считать, что постепенное повышение температур происходит только в литосфере, а источником внутреннего тепла Земли служит верхняя мантия. Ниже рост температур замедляется, и в центре Земли она не превышает 50 000В °C.

Плотность Земли. В Чем плотнее тело, тем больше масса единицы его объема. Эталоном плотности принято считать воду, 1В см3 которой весит 1В г, т.В е. плотность воды равна 1В г/с3. Плотность других тел определяется отношением их массы к массе воды такого же объема. Отсюда понятно, что все тела, имеющие плотность больше 1, тонут, меньше – плавают.

Плотность Земли в разных местах неодинакова. Осадочные породы имеют плотность 1,5–2 г/см3, а базальты – более 2В г/см3. Средняя плотность Земли составляет 5,52В г/см3– это в 2 с лишним раза больше плотности гранита. В центре Земли плотность слагающих ее пород возрастает и составляет 15–17В г/см3.

Давление внутри Земли. В Горные породы, находящиеся в центре Земли, испытывают огромное давление со стороны вышележащих слоев. Подсчитано, что на глубине всего лишь 1В км давление составляет 104гПа, а в верхней мантии оно превышает 6 * 104гПа. Лабораторные эксперименты показывают, что при таком давлении твердые тела, например мрамор, изгибаются и могут даже течь, т.В е. приобретают свойства, промежуточные между твердым телом и жидкостью. Такое состояние веществ называют пластическим. Данный эксперимент позволяет утверждать, что в глубоких недрах Земли материя находится в пластическом состоянии.

Химический состав Земли. В В Земле можно найти все химические элементы таблицы Д. И. Менделеева. Однако количество их неодинаково, распределены они крайне неравномерно. Например, в земной коре кислород (О) составляет более 50В %, железо (Fе) – менее 5В % ее массы. Подсчитано, что базальтовый и гранитный слои состоят в основном из кислорода, кремния и алюминия, а в мантии возрастает доля кремния, магния и железа. В целом же принято считать, что на 8 элементов (кислород, кремний, алюминий, железо, кальций, магний, натрий, водород) приходится 99,5В % состава земной коры, а на все остальные – 0,5В %. Данные о составе мантии и ядра носят предположительный характер.

Другие статьи из раздела «3. Внутреннее строение и рельеф земли»:В· § 15. Методы изучения внутреннего строения землиВ· § 16. Внутреннее строение землиВ В  > В· § 17. Физические свойства и химический состав землиВ· § 18. Движение земной корыВ· § 19. Вулканы и землетрясенияВ· § 20. Внешние процессы, преображающие поверхность землиВ· § 21. Минералы и горные породыВ· § 22. Развитие земной корыВ· § 23. Рельеф земного шараВ· § 24. Почва

<<В Назад</a>В  В  | Оглавление | В  В ВпередВ >>§ 16. Внутреннее строение земли§ 18. Движение земной коры

Похожие страницы В· § 18. Движение земной коры В· § 16. Внутреннее строение Земли В· § 17. Физические свойства и химический состав земли В· 3. ВНУТРЕННЕЕ СТРОЕНИЕ И РЕЛЬЕФ ЗЕМЛИ В· § 17. Физические свойства и химический состав Земли В· § 20. Внешние процессы, преображающие поверхность земли В· 4.1.2. Основные свойства водной среды image Содержание

Плодородная почва – это самое главное богатство любой страны. Хорошая и качественная земля, которая богата полезными микроэлементами, гумусом является залогом большого урожая сельскохозяйственных культур. Наиболее насыщенным и плодородным является такой тип грунта, как чернозем. Страны, на территории которых он есть, имеют возможность каждый год экспортировать на мировой рынок зерновые культуры в большом количестве, тем самым улучшая рост экономики страны.

Чернозем – это особый тип грунта насыщенно черного цвета, наполненный полезными микроэлементами. Чаще всего он формируется на лёссовидных суглинках. Наиболее приемлемым для формирования такой плодородной почвы является суббореальный или умеренно континентальный климат. В данной статье мы расскажем все о плотности чернозема, факторах, которые влияют на вес и о существующих методах вычисления данного значения.

Что влияет на вес?

Самым важным параметром почвы является ее плотность. Это одна из важнейших характеристик, от показателя которой зависит не только качество и скорость роста посаженных на почве культур, но и коэффициент воздухообмена, влагопроницаемости, теплоемкости. Также величина плотности влияет на микробиологический и окислительно-восстановительный процессы. Плотностью или объемной массой называют величину, которая определяется путем соотношения массы почвы в сухом естественном состоянии к занимаемому объему. Измеряется насыпная плотность в кг/м³.

Существует множество факторов, которые влияют на формирование веса чернозема. Основными из них являются:

  • глубина залегания почвы;
  • состояние грунта;
  • наличие различных примесей, в том числе и микроэлементов, полезных веществ.

Вес чернозема будет существенно отличаться в зависимости от его состояния: в сухом виде он будет меньше, чем в мокром. Он также разнится, находясь в естественном состоянии в природе от нахождения в плотном теле.

Существует целая наука, которая называется «грунтоведение», в основу которой положено изучение различных параметров и характеристик грунта.

Сколько весит куб чернозема?

Современные ученые, занимающиеся изучением свойств и характеристик почв, в настоящее время выделяют 2 параметра веса.

  • Удельный – отношение объёма почвы к весу высушенных при 100-105 градусах твердых частиц. Он зависит от минерального состава почвы и наличия минеральных веществ.
  • Объемный, или скелет грунта, – вес, выражающийся в единице объема. Он может быть сухим и влажным.

Измеряется масса в тоннах, а вот удельный и объемный вес – в кубических метрах (т/м³). Научным путем было установлено, что величина удельного веса чернозема колеблется в пределах от 1,2 т/м³ до 1,5 т/м³. Вес кубометра плодородного грунта может отличаться. В среднем в 1 тонне чернозема 1000-1300 килограмм. Таким образом, используя соотношение можно определить вес 3,5, 15 или 10 кубов чернозема.

Чтобы ознакомиться с подробной информацией о зависимости основных параметров чернозема от состояния грунта, взгляните на таблицу.

Состояние плодородной почвы

Величина объемного веса (т/м³)

Коэффициент насыпной плотности

Кубы в 1 т

Пластичная, в которой отсутствуют корни и примеси

1,3

0,7-0,8

1,2-1,3

Пластичная, в составе которой есть корни и примеси

1,35

0,7-0,8

1,24-1,34

Не пластичная, характеризуется небольшой влажностью

1,2

0,9-0,95

1,05-1,12

Сырая, со средним коэффициентом влажности

1,4

1,0-1,2

0,82-0,9

Мокрая, с высоким показателем влажности

1,45-1,66

1,11-1,21

0,82-0,92

В данной таблице хорошо видно, как меняется объемный вес, насыпная плотность и количество кубов в 1 тонне грунта в зависимости от состояния почвы.

Как определить и рассчитать?

В настоящее время существует и довольно активно развивается черный рынок земли. Многие «умельцы» вывозят за границу чернозем в очень большом количестве и продают за очень большие деньги. Конечно, законодательство и правоохранительные органы всячески стараются не допускать таких правонарушений. Именно поэтому сегодня нечистые на руки предприниматели могут вместе чернозема продавать торф или почвосмесь, надеясь на то, что никто не увидит разницы.

Тем же, кто хочет купить небольшое количество плодородной почвы для собственного дачного участка или огорода, безусловно, следует знать, как визуально отличить плодородный грунт от того же торфа или обычной почвосмеси. Итак, нужно обращать внимание на следующие факторы.

  • Цвет грунта, как он выглядит. Чернозем обладает ярким и насыщенным черным цветом, для которого характерен маслянистый блеск.
  • Структура. У плодородной почвы с наличием гумуса в составе она комковатая или крупнозернистая.
  • Реакция на влажную среду. Если на чернозем вылить воду, он очень быстро ее впитает. А после того как почва высохнет, она станет твердой.
  • Тактильные ощущения. Если вы возьмете в руку даже небольшое количество плодородной почвы и сильно сожмете, на коже останется очень отчетливый темный цвет. Это будет свидетельствовать, что в составе грунта есть гумус.

В том случае, если вы решили обновить свой участок, улучшить его состояние и урожайность путем приобретения чернозема, вот добрый совет. Желательно перед покупкой предварительно произвести расчет, который поможет определить нужное количество грунта и не потратить лишние деньги. Это достаточно просто, нужно только следовать инструкции.

  • В магазине приобретите специальную бумагу (миллиметровку). На нее нанесено большое количество мелких клеточек, размер каждой из которых – 1 мм х 1 мм.
  • На данной бумаге создайте план участка. Пусть, например, одна клетка на бумаге будет ровняться 1 м².
  • Определитесь, какие культуры вы будете выращивать. Это необходимо для того, чтобы вычислить нужную толщину чернозема на каждом участке. Например, толщина чернозема для посева газонной травы должна быть примерно 30 см, для кустов – 50 см, а вот для высадки деревьев понадобится не менее 1 метра толщины чернозема.
  • Рассчитайте площадь всех зон. Полученная величина умножается на толщину слоя.

Этот простой расчет дает возможность определить необходимое количество плодородной смеси в кубометрах. Что касается таких показателей, как насыпная плотность, удельный и объемный вес, то определить их точное значение в домашних условиях не получится. Для этого используют специальное оборудование. Если данные параметры для вас имеют значение, то лучше всего опираться на те данные, которые указаны в таблице выше.

При покупке плодородного грунта желательно убедиться в том, что продавец добросовестный, имеет все необходимые разрешения и лабораторно подтвержденные характеристики чернозема.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий