Общий органический углерод в воде: определение содержания лабораторным анализом

Содержание

Элемент периодической системы Углеро́д (лат. Carboneum, от cаrbo — уголь; С, читается «це») — химический элемент с атомным номером 6, атомная масса 12, 011. Природный углерод состоит из двух стабильных нуклидов: 12С, 98, 892% по массе и 13C — 1, 108%. В природной смеси нуклидов в ничтожных количествах всегда присутствует радиоактивный нуклид 14C (бета-излучатель, период полураспада 5730 лет). Он постоянно образуется в нижних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14N: 147N + 1n = 146C + 11H. Углерод расположен в группе IVA, во втором периоде периодической системы. Конфигурация внешнего электронного слоя атома в основном состоянии 2s2p2. Важнейшие степени окисления +2 +4, –4, валентности IV и II. Радиус нейтрального атома углерода 0, 077 нм. Радиус иона C4+ 0, 029 нм (координационное число 4), 0, 030 нм (координационное число 6). Энергии последовательной ионизации нейтрального атома равны 11, 260, 24, 382, 47, 883, 64, 492 и 392, 09 эВ. Электроотрицательность по Полингу 2, 5. Редактировать

Историческая справка

Углерод известен с глубокой древности. Древесный уголь использовали для восстановления металлов из руд, алмаз — как драгоценный камень. В 1789 французский химик А.Л. Лавуазье сделал вывод об элементарной природе углерода. Искусственные алмазы впервые были получены в 1953 шведскими исследователями, но результаты они не успели опубликовать. В декабре 1954 искусственные алмазы получили, а в начале 1955 опубликовали результаты сотрудники компании «Дженерал электрик». В СССР искусственные алмазы впервые были получены в 1960 группой ученых под руководством В. Н. Бакуля и Л. Ф. Верещагина. В 1961 группой советских химиков под руководством В. В. Коршака была синтезирована линейная модификация углерода — карбин. Вскоре карбин был обнаружен в метеоритном кратере Рис (Германия). В 1969 в СССР были синтезированы нитевидные кристаллы алмаза при обычном давлении, обладающие высокой прочностью и практически лишенные дефектов. В 1985 Г. Крото обнаружил новую форму углерода —фуллерены С60 и С70 в масс-спектре испаряемого при облучении лазером графита. При высоких давлениях получен лонсдейлит. Редактировать

Нахождение в природе

Содержание в земной коре 0, 48% по массе. Накапливается в биосфере: в живом веществе 18% угля, в древесине 50%, торфе 62%, природных горючих газах 75%, горючих сланцах 78%, каменном и буром угле 80%, нефти 85%, антраците 96%. Значительная часть угля литосферы сосредоточена в известняках и доломитах. Углерод в степени окисления +4 входит в состав карбонатных пород и минералов (мел, известняк, мрамор, доломиты). Углекислый газ CO2 (0, 046% по массе) постоянный компонент атмосферного воздуха. Углекислый газ в растворенном виде всегда присутствует в воде рек, озер и морей. В атмосфере звезд, планет и в метеоритах обнаружены вещества, содержащие углерод. Редактировать

Получение

С древности уголь получали при неполном сгорании древесины. В 19 веке древесный уголь в металлургии заменили каменным углем (коксом). В настоящее время для промышленного получения чистого углерода используют крекинг природного газа метана СН4: СН4 = С + 2Н2 Уголь для медицинских целей готовят сжиганием кожуры кокосовых орехов. Для лабораторных нужд чистый уголь, не содержащий несгораемых примесей, получают неполным сжиганием сахара. Редактировать

Физические и химические свойства

Углерод — неметалл. Многообразие соединений углерода объясняется способностью его атомов связываться между собой, образуя объемные структуры, слои, цепи, циклы. Известны четыре аллотропические модификации углерода: алмаз, графит, карбин и фуллерит. Древесный уголь состоит из мельчайших кристалликов с неупорядоченной структурой графита. Его плотность 1, 8-2, 1 г/см3 . Сажа представляет собой сильно измельченный графит. Алмаз — минерал с кубической гранецентрированной решеткой. Атомы С в алмазе находятся в sp3-гибридизованном состоянии. Каждый атом образует 4 ковалентные s-связи с четырьмя соседними атомами С, расположенными по вершинам тетраэдра, в центре которого находится атом С. Расстояния между атомами в тетраэдре 0, 154 нм. Электронная проводимость отсутствует, ширина запрещенной зоны 5, 7 эВ. Из всех простых веществ алмаз имеет максимальное число атомов, приходящихся на единицу объема. Его плотность 3, 51 г/см3.. Твердость по минералогической шкале Мооса принята за 10. Алмаз можно поцарапать только другим алмазом; но он хрупок и при ударе раскалывается на куски неправильной формы. Термодинамически устойчив лишь при высоких давлениях. Однако, при 1800 °C превращение алмаза в графит происходит быстро. Обратное превращение графита в алмаз происходит при 2700°C и давлении 11-12 ГПа. Графит — слоистое темно-серое вещество с гексагональной кристаллической решеткой. Термодинамически устойчив в широком интервале температур и давлений. Состоит из параллельных слоев, образованных правильными шестиугольниками из атомов С. Углеродные атомы каждого слоя расположены против центров шестиугольников, находящихся в соседних слоях; положение слоев повторяется через один, а каждый слой сдвинут относительно другого в горизонтальном направлении на 0, 1418 нм. Внутри слоя связи между атомами ковалентные, образованы sp2-гибридными орбиталями. Связи между слоями осуществляются слабыми ван-дер-ваальсовыми силами, поэтому графит легко расслаивается. Такое состояние стабилизирует четвертая делокализованная π-связь. Графит обладает хорошей электрической проводимостью. Плотность графита 2, 1-2, 5 кг/дм3. Во всех аллотропических модификациях при обычных условиях углерод химически малоактивен. В химические реакции вступает только при нагревании. При этом химическая активность углерода убывает в ряду сажа—древесный уголь—графит—алмаз. Сажа на воздухе воспламеняется при нагревании до 300°C, алмаз — при 850-1000°C. При горении образуется углекислый газ СО2 и CO. Нагревая СО2 с углем, также получают оксид углерода (II) CО: СО2+ С = 2СО С + Н2О (перегретый пар) = СО +Н2 Синтезирован оксид углерода С2О3. СО2 — кислотный оксид, ему отвечает слабая неустойчивая, существующая только в сильно разбавленных холодных водных растворах угольная кислота Н2СО3. Соли угольной кислоты — карбонаты (К2СО3, СаСО3) и гидрокарбонаты (NaHCO3, Са(НСО3)2). С водородом графит и древесный уголь реагируют при температуре выше 1200°C, образуя смесь углеводородов. Реагируя со фтором при 900°C, образует смесь фторуглеродных соединений. Пропуская электрический разряд между угольными электродами в атмосфере азота, получают газ циан (CN)2; если в газовой смеси присутствует водород, образуется синильная кислота HCN. При очень высоких температурах графит реагирует с серой, кремнием, бором, образуя карбиды — CS2, SiC, В4С. Карбиды получают взаимодействием графита с металлами при высоких температурах: карбид натрия Na2C2, карбид кальция CaC2, карбид магния Mg2C3, карбид алюминия Al4C3. Эти карбиды легко разлагаются водой на гидроксид металла и соответствующий углеводород: Al4C3 + 12Н2О = 4Al(ОН)3 + 3СН4 С переходными металлами углерод образует металлоподобные химически стойкие карбиды, например, карбид железа (цементит) Fe3C, карбид хрома Cr2C3, карбид вольфрама WС. Карбиды — кристаллические вещества, природа химической связи может быть различной. При нагревании уголь восстанавливает многие металлы из их оксидов: FeO + C = Fe + CO, 2CuO+ C = 2Cu+ CO2 При нагревании восстанавливает серу(VI) до серы(IV) из концентрированной серной кислотой: 2H2SO4+ C = CO2+ 2SO2+ 2H2O При 3500°C и нормальном давлении углерод сублимирует. Редактировать

Применение

Свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо. 10% добываемого топлива используется в качестве сырья для основного органического и нефтехимического синтеза, для получения пластмасс. Редактировать

Физиологическое действие

Углерод — важнейший биогенный элемент, является структурной единицей органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, витамины, гормоны, медиаторы и другие). Содержание углерода в живых организмах в расчете на сухое вещество составляет 34, 5-40% у водных растений и животных, 45, 4-46, 5% у наземных растений и животных и 54% у бактерий. В процессе жизнедеятельности организмов происходит окислительный распад органических соединений с выделением во внешнюю среду CO2. Углекислый газ, растворенный в биологических жидкостях и природных водах, участвует в поддержании оптимальной для жизнедеятельности кислотности среды. В составе CaCO3 углерод образует наружный скелет многих беспозвоночных, содержится в кораллах, яичной скорлупе. При различных производственных процессах частицы угля, сажи, графита, алмаза попадают в атмосферу и находятся в ней в виде аэрозолей. ПДК для углеродной пыли в рабочих помещениях 4, 0 мг/м3, для каменного угля 10 мг/м3. Авторы: , Редактировать

Дополнительная литература

  • Сюняев З. И. Нефтяной углерод. М., 1980.
  • Химия гиперкоординированного углерода. М., 1990.
  • Углерод в лесном фонде и сельскохозяйственных угодьях России. – Москва: Товарищество научных изданий КМК, 2005.
  • Морган Ричард. Видоизмененный углерод. – М.: АСТ: Люкс, 2005.
  • Углерод: минералогия, геохимия и космохимия. – Сыктывкар: Геопринт, 2003.
  • Фиалков А. С. Углерод, межслоевые соединения и композиты на его основе. – М.: Аспект-пресс, 1997.
  • Фенелонов В. Б. Пористый углерод. – Новосибирск: Ин-т катализа, 1995.

Статья находится в рубриках

image

Содержание:

История открытия углерода Углерод в таблице Менделеева Строение атома углерода Физические свойства углерода Химические свойства углерода Углерод в природе Применение углерода Рекомендованная литература и полезные ссылки Углерод, видео

Углерод – важнейший химический элемент периодической таблицы Менделеева. Без него, как и без кислорода и водорода немыслимой была бы сама Жизнь. Можно без преувеличения сказать, что жизнь всех живых существ от амебы до человека построена именно из соединений углерода. Углерод – биогенный элемент составляющий основу жизни на нашей планете. Будучи структурной единицей огромного числа различных органических соединений, он участвует и в построении живых организмов и в обеспечении их жизнедеятельности. Даже возникновение самой Жизни рассматривается учеными как сложный процесс эволюции углеродных соединений. А какие химические и физические свойства этого чудесного элемента, история его открытие и современное применение в химии, читайте об этом далее.

История открытия углерода

На самом деле углерод был известен человеку еще с глубокой древности в виде своих аллотропных модификаций: алмаза и графита. Помимо этого углерод в виде древесного угля активно применялся при выплавке металлов. От угля происходит и само название углерода, как химического элемента.

Но в те далекие времена люди пользовались углеродом в виде угля, или любовались им же, в виде алмазов, неосознанно, без понимания того, какой важный химический элемент стоит за всем этим.

Научное открытие углерода произошло в 1791 году, когда английский химик Теннант впервые получил свободный углерод. Для получения углерода он пропускал пары фосфора над прокаленным мелом. В результате этой химической реакции образовались фосфат кальция и чистый углерод. Впрочем, этому опыту предшествовали и другие искания, например выдающийся французский химик Лавуазье поставил опыт по сжиганию алмаза при помощи большой зажигательной машины. Драгоценный алмаз сгорел без остатка, после чего ученый пришел к выводу, что алмаз представляет собой ничто иное как кристаллический углерод.

Интересно, что в этих опытах совместно с алмазом пробовали сжигать и другие драгоценные камни, к примеру, рубин. Но другие камни выдерживали высокую температуру, только алмаз сгорал без остатка, что и обратило внимание на его отличную химическую природу.

Углерод в таблице Менделеева

В основе расположения химических элементов в периодической системе Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода. Атомная масса углерода составляет 12,011, согласно ней он занимает почетное 6-е место в таблице Менделеева и обозначается латинской литерой С.

Помимо этого следует обратить внимание на следующие характеристики углерода:

  • Природный углерод состоит из смеси двух стабильных изотопов 12С (98,892%) и 13С (1,108%)
  • Помимо этого известно 6 радиоактивных изотопов углерода. Один из них, изотоп 14С с периодом полураспада 5,73*103 лет в небольших количествах образуется в верхних слоях атмосферы нашей планеты под действием космического излучения.

Строение атома углерода

Атом углерода имеет 2 оболочки (как впрочем, и все элементы, расположенные во втором периоде) и 6 электронов: 1s22s22p2. Четыре валентных электрона находятся на внешнем электронном уровне атома углерода. А оставшиеся два электрона находятся на отдельных p-орбиталях, при этом они являются неспаренными.

Так на картинке изображена схема электронного строения атома углерода.

Физические свойства углерода

Своими физическими свойствами углерод типичный неметалл. При этом он образует множество аллотропных модификаций («аллотропные» означает существование двух и более разных веществ из одного химического элемента): наиболее популярными из них являются алмаз, графит, уголь, сажа. При этом алмаз – одно из самых твердых веществ, представляющих углерод.

Разумеется, разные аллотропные модификации углерода имеют и разные физические свойства. Если алмаз типичное твердое тело, то, к примеру, жидкий углерод, который можно получить только при определенном внешнем давлении, обладает совершенно иными физическими свойствами, нежели алмаз или графит.

Химические свойства углерода

В обычных условиях углерод, как правило, химически инертен, но при высоких температурах он может вступать в химические взаимодействия со многими другими элементами, обычно проявляя сильные восстановительные свойства. Приведем примеры химических реакций углерода как восстановителя с:

— с кислородом C + O2  –=  COуглекислый газ

при недостатке кислорода — неполное сгорание: 2C + O2  –= 2C+2O угарный газ

— со фтором С + 2F2 = CF4

— с водяным паром C + H2O  –1200°= С+2O + Hводяной газ

— с оксидами металлов. Таким образом, выплавляют металл из руды. C + 2CuO  –=  2Cu + C+4O2

— с кислотами – окислителями: C + 2H2SO4(конц.) = С+4O2­ + 2SO2­ + 2H2O С + 4HNO3(конц.) = С+4O2­ + 4NO2­ + 2H2O

— с серой образует сероуглерод: С + 2S2 = СS2.

Порой углерод может выступать и как окислитель, образуя карбиды при вступлении в химические реакции с некоторыми металлами:

4Al + 3C = Al4C3

Ca + 2C = CaC2-4

Вступая в реакцию с водородом, углерод образует метан:

C + 2H2 = CH4

Углерод в природе

В земной коре содержание углерода составляет всего лишь 0,15%. Несмотря на эту кажущуюся маленькой цифру, стоит заметить, что углерод непрерывно участвует в природном круговороте из земной коры через биосферу в атмосферу и наоборот. Также именно из углерода состоят такие ценные ресурсы как нефть, уголь, торф, известняки и природный газ. И как мы писали в начале нашей статьи, углерод – основа жизни. Скажем, в теле взрослого человека с весом в 70 кг имеется около 13 кг углерода. Это только в одном человека, примерно в таких же пропорциях углерод содержится в телах всех других живых существ, растений и животных.

Применение углерода

Можно сказать, что углерод неразрывно связан с самим развитием человеческой цивилизации. Именно из соединений с участием углерода образованы основные топлива, благодаря которым ездят машины, летают самолеты, вы можете приготовить себе еду и обогреть свой дом в холодную пору – это нефть и газ. Помимо этого соединения углерода активно используются в химической и металлургической промышленности, в фармацевтике и строительстве. Алмазы, будучи аллотропной модификацией углерода используются в ювелирном деле и ракетостроении. В целом промышленность современности не может обойтись без углерода, он необходим практически везде.

Рекомендованная литература и полезные ссылки

  • Savvatimskiy, A (2005). “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003)”. Carbon. 43 (6): 1115–1142. doi:10.1016/j.carbon.2004.12.027
  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1. — 623 с.
  • ChemNet. Углерод: история открытия элемента.
  • Лейпунский О. И. Об искусственных алмазах (рус.) // Успехи химии. — Российская академия наук, 1939. — Вып. 8. — С. 1519—1534.
  • Seal M. The effect of surface orientation on the graphitization of diamond. // Phis. Stat. Sol., 1963, v. 3, p. 658.

Углерод, видео

И в завершение образовательное видео по теме нашей статьи.

При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

Страница про автора –>

Углерод – это, наверное, один из самых впечатляющих элементов химии на нашей планете, который обладает уникальной способностью образовывать огромное множество различных органических и неорганических связей.

Одним словом, углеродные соединения, которые обладают уникальными характеристиками – основа жизни на нашей планете.

Содержание

Что такое углерод

В химической таблице Д.И. Менделеева углерод находится под шестым номером, входит в 14 группу и носит обозначение «С».

Физические свойства

Это водородное соединение, входящее в группу биологических молекул, молярная масса и молекулярная масса которого – 12,011, температура плавления составляет 3550 градусов.

Степень окисления данного элемента может быть: +4, +3, +2, +1, 0, -1, -2, -3, -4, а плотность составляет 2,25 г/см3.

В агрегатном состоянии углерод твердое вещество, а кристаллическая решетка атомная.

Углерод имеет следующие аллотропные модификации:

  • алмаз,
  • графит,
  • фуллерен,
  • карбин.

Строение атома

Атом вещества имеет электронную конфигурацию вида 1S22S22P2. На внешнем уровне у атома 4 электрона, находящиеся на двух разных орбиталях.

Если же брать возбужденное состояние элемента, то его конфигурация становится 1S22S12P3.

К тому же атом вещества может быть первичным, вторичным, третичным и четвертичным.

Химические свойства

Пребывая в нормальных условиях, элемент инертен и во взаимодействие с металлами и неметаллами вступает при повышенных температурах:

  • взаимодействует с металлами, вследствие чего образуются карбиды,
  • вступает в реакцию с фтором (галоген),
  • при повышенных температурах взаимодействует с водородом и серой,
  • при повышении температуры обеспечивает восстановление металлов и неметаллов из оксидов,
  • при 1000 градусах вступает во взаимодействие с водой,
  • при повышении температуры горит.

Получение углерода

Углерод в природе можно найти в виде черного графита либо же, что очень редко, в виде алмаза. Ненатуральный графит получают с помощью реакции кокса с кремнеземом.

А ненатуральные алмазы получают, применяя тепло и давление вместе с катализаторами. Так металл расплавляется, а получившийся алмаз выходит в виде осадка.

Добавление азота приводит к получению желтоватых алмазов, а бора – голубоватых.

История открытия

Углерод использовался людьми с давних времен. Грекам был известен графит и уголь, а алмазы впервые нашлись в Индии. К слову, в качестве графита люди часто принимали схожие по виду соединения. Но даже несмотря на это, графит широко использовался для письма, ведь даже слово «графо» с греческого языка переводится как «пишу».

В настоящее время графит используется так же в письме, в частности его можно встретить в карандашах. В начале 18 века в Бразилии началась торговля алмазами, были открыты многие месторождения, а уже во второй половине 20 века люди научились получать ненатуральные драгоценные камни.

На настоящий момент ненатуральные алмазы используются в промышленности, а настоящие – в ювелирной сфере.

Роль углерода в организме человека

В тело человека углерод попадает вместе с пищей, в течение суток – 300 г. А общее количество вещества в человеческом организме составляет 21% от массы тела.

Из данного элемента состоят на 2/3 мышцы и 1/3 костей. А выводится из тела газ вместе с выдыхаемым воздухом либо же с мочевиной.

Стоит отметить: без этого вещества жизнь на Земле невозможна, ведь углерод составляет связи, помогающие организму бороться с губительным влиянием окружающего мира.

Таким образом, элемент способен составлять продолжительные цепи либо же кольца атомов, которые представляют собой основу для множества других важных связей.

Нахождение в природе углерода

Элемент и его соединения можно встретить повсюду. В первую очередь отметим, что вещество составляет 0,032% от общего количества земной коры.

Одиночный элемент можно встретить в каменном угле. А кристаллический элемент находится в аллотропных модификациях. Также в воздухе постоянно растет количество углекислого газа.

Большую концентрацию элемента в окружающей среде можно встретить в качестве соединений с различными элементами. Например, двуокись углерода содержится в воздухе в количестве 0,03%. В таких минералах как известняк или же мрамор, содержатся карбонаты.

Все живые организмы несут в себе соединения углерода с иными элементами. К тому же остатки живых организмов становятся такими отложениями, как нефть, битум.

Применение углерода

Соединения этого элемента широко используются во всех сферах нашей жизни и перечислять их можно бесконечно долго, поэтому мы укажем несколько из них:

  • графит используется в грифелях карандашей и изготовлении электродов,
  • алмазы нашли свое широкое применение в ювелирной сфере и в буровом деле,
  • углерод используют как восстановитель для выведения таких элементов, как железная руда и кремний,
  • активированный уголь, состоящий в основном из этого элемента, широко используется в медицинской области, промышленности и в быту.

Геохимический цикл углерода (круговорот углерода в природе) — это процесс, посредством которого углерод циркулирует между атмосферой, гидросферой, литосферой и живыми организмами (биосферой).

  • Круговорот кислорода в природе;
  • Круговорот азота в природе;
  • Круговорот воды в природе.

Как осуществляется круговорот карбона

Большая часть углерода входит в состав атмосферы, а именно в виде углекислого газа. В водной среде также имеется диоксид углерода. Вместе с тем, как происходит круговорот воды и воздуха в природе, совершается оборот С в окружающей среде. Что касается углекислого газа, то из атмосферы он поглощается растениями. Далее происходит фотосинтез, после которого образуются различные вещества, в состав которых входит карбон. Общее количество углерода разделяется на части:

  • некоторое количество остается в составе молекул растений, присутствуя в них до момента отмирания дерева, цветка или травы;
  • вместе с флорой карбон попадает в организм животных, когда те питаются растительностью, и в процессе дыхания они выдыхают СО2;
  • когда плотоядные животные съедают травоядных, то С попадает в организм хищников, выделяясь потом через органы дыхания;
  • часть углерода, оставшись в растениях, попадает в грунт, когда они отмирают, и в результате карбон соединяется с атомами иных элементов, и вместе они принимают участие в образовании топливных полезных ископаемых, таких как уголь.

Это интересно: Особенности основных типов экосистем морей и океанов

Значение углерода в жизнедеятельности живой природы

Особое значение углерод в природе имеет не просто так: уникальные свойства серьезно выделяют его на фоне других химических элементов системы. Углерод образует прочные химические связи как внутри себя (между собственными атомами), так и с другими элементами. Но несмотря на свою прочность, эти связи могут быть достаточно просто разорваны во вполне мягких условиях.

В природе существует конкретная экономичность благодаря углероду: с помощью углерода и некоторого количества типов его связей производится сокращение ферментов, участвующих в расщеплении и синтезе органики. Важным также является то, что углерод – один из трех элементов (вместе с кислородом и водородом), которые составляют не больше, не меньше, чем 98 % всей массы живого на Земле.

В рамках гипотезы А.И. Опарина, принятой научным сообществом, предполагается, что самые первые органические соединения на нашей планете произошли абиогенным образом. Первичными источниками углерода были такие соединения, как HCN (цианистый водород) и CH4 (метан).

Именно эти вещества в основном содержались в атмосфере Земли начала времен. На данный момент углерод (в соединении СО2) отлично ассимилируется посредством фотосинтеза – сложного процесса, происходящего в клетках зеленых растений. Животные же в большинстве потребляют углерод в форме уже готовых органических соединений.

Самое распространенное соединение углерода – его двуокись (СО2). Будучи растворенной практически во всех жидкостях (в частности – и в воде) на Земле, двуокись углерода выполняет важную функцию поддержания кислотной среды. А такое соединение как, например, CaCO3 является основным в составе раковин и внешних покрытий беспозвоночных или в скорлупе яиц.

Круговорот углерода в природе

В окружающей среде имеются две разновидности соединений: органические (живые) и неорганические (мёртвые). К первым относят вещества биологического происхождения (углеводы, белки и липиды). В их структуре находится ряд важнейших макроэлементов. В неорганических соединениях, возникающих путём взаимодействия химических реакций, совсем отсутствует углерод. К ним относят металлы, газы, оксиды, соли и т. д. Биосфера, используя углерод в качестве основополагающего элемента, трансформирует одно состояние в другое. Наука называет этот процесс «круговоротом веществ»:

  • Атмосфера, водная среда и земля наполнены неорганическими соединениями, попадающими в пищевой тракт простейших живых существ (грибы, растения).
  • Последних поглощают высшие животные.
  • Когда эти создания погибают, мельчайшие организмы начинают перерабатывать мёртвую плоть обратно в состояние металла или соли.

Таким представляется общий принцип круговорота углекислого газа в природе. Однако, если рассматривать вопрос глубже, возникают различные нюансы.

Деятельность мельчайших существ

Вирусы, бактерии и паразиты могут с большим правом называться началом и концом всякой пищевой цепи. Благодаря действию мельчайших существ высшие растения и представители животного мира получают необходимую энергию для существования. Умершие организмы попадают в структуру почвы или достигают дна океана. Без деятельности вирусов и бактерий плоть животных или тело растений оставались бы лежать в нетронутом состоянии. Перерабатывая мёртвую структуру, мельчайшие существа способствуют выделению углекислого газа или его простых соединений. Следовательно, питание получают живые организмы, а круговорот элементов начинается вновь.

На заметку!

Некоторые создания совсем не нуждаются в кислороде, чтобы расщепить мёртвую структуру. Анаэробные бактерии процветают в водной среде и способны образовывать чёрное сернистое железо, которое придаёт рекам или болотам характерный цвет.

Симбиоз — выгодное взаимодействие двух организмов — является частью круговорота углерода в биосфере. Некоторые животные неспособны расщепить клетчатку (целлюлозу), имеющую сложную структуру. Однако природа поместила в желудки парнокопытных полезные микроорганизмы. Последние легко справляются с расщеплением целлюлозы до простых элементов, получая при этом пищу. Желудок парнокопытных усваивает переработанную клетчатку.

Фотосинтез и клеточное дыхание

Как упоминалось ранее, углерод находится во многих различных формах и в разных местах. Мы уже знаем, что он находится в нашей атмосфере. Но только некоторые организмы действительно могут использовать атмосферный углерод. Давайте начнем с рассмотрения процесса фотосинтеза, посредством которого углерод в атмосфере в форме CO2 используется растениями.

Растения могут производить органические вещества, используя несколько простых ингредиентов: CO2, воду (или H2O) и солнечную энергию. Это можно представить следующим уравнением:

6CO2 (диоксид углерода) + 6H2O (вода) + солнечный свет → C6H12O6 (углевод) + 6O2 (кислород)

Теперь вы можете видеть, что в процессе фотосинтеза атомы углерода были взяты из углекислого газа и использованы для создания C6H12O6 или глюкозы. И куда пойдет углерод дальше?

Подумайте, кто может есть растения. Например, люди, которые должны добывать себе пищу, чтобы выжить. Итак, когда мы едим растительные продукты, мы получаем из них глюкозу. Когда мы едим мясо, мы также можем получить глюкозу, так как животные питаются растениями.

После переваривания глюкоза из растения расщепляется в наших клетках для выработки энергии. Этот процесс называется клеточным дыханием. По сути, это процесс, противоположный фотосинтезу, и его побочным продуктом является CO2. Организмы избавляются от этих отходов, выдыхая их обратно в атмосферу. Каждый раз, когда вы дышите, вы участвуете в круговороте углерода, потому что выдыхаете CO2. Таким образом, вы можете видеть, как углерод движется по всей планете и влияет на каждый организм.

Это интересно: Биосфера

Биогеохимический цикл углерода в океане

Процесс взаимодействия элементов в водной среде несколько сложнее, чем на земле. Углекислый газ долго растворяется в жидкости, и взаимодействие веществ замедлено. В гидросфере классифицируют три резервуара с этим элементом: поверхность, глубокие воды и область радиоактивных веществ. За переработку углекислоты отвечает планктон, находящийся в верхних слоях океана. Здесь начинается пищевая цепочка. Затем высшие организмы поглощают слабых, а погибая, опускаются на самое дно, где подвергаются тщательной переработке со стороны микроорганизмов.

Поделитесь в соц.сетях:

Оцените статью:

Содержание

Геохимический цикл углерода (круговорот углерода в природе) — это процесс, посредством которого углерод циркулирует между атмосферой, гидросферой, литосферой и живыми организмами (биосферой).

Читайте также:

Круговорот кислорода в природе;

Круговорот азота в природе;

Круговорот воды в природе.

Углерод: важнейший элемент

Когда вы в последний раз видели периодическую таблицу Менделеева? Возможно, вы помните таблицу, которая висела на стене в вашем школьном классе. В ней содержится вся ключевая информация о каждом элементе, существующем на Земле. Одни из элементов, представленных в таблице, редки и незнакомы, например иттрий и калифорний. Другие являются драгоценными и благородными, например, золото и серебро.

Но в периодической таблице есть один элемент, который незаменим для каждого живого организма. Он также входит в состав воздуха и постоянно циркулирует через нашу Землю, живые организмы и атмосферу. Этот элемент — углерод, и в этой статье мы рассмотрим очень важный процесс, называемый геохимическим циклом углерода.

Особенности круговорота углерода

Углерод — это элемент, который встречается во многих различных формах и местах нашей Земли и атмосферы. Как упоминалось ранее, он в больших количествах содержится в живых организмах. Без этого элемента мы бы даже не существовали. Ключевые молекулы, из которых состоит наш организм, такие как белки, углеводы и ДНК, содержат углерод в качестве основного компонента. Углерод также в изобилии присутствует в нашей атмосфере в форме углекислого газа или CO2. Кроме того, углерод также содержится в Земле в виде ископаемого топлива.

Круговорот углерода — это, по сути, естественный способ повторного использования атомов углерода различными способами и в разных местах. Это процесс, при котором углерод перемещается из атмосферы в живые организмы и Землю, а затем обратно в атмосферу. Но как он работает и что заставляет углерод циркулировать?

Важно понимать, что наша Земля и ее атмосфера в целом являются замкнутой средой. Материя, которая существует сейчас, — это все, что у нас когда-либо будет. Вы когда-нибудь слышали фразу: «Материю невозможно создать или уничтожить»? Возьмем, к примеру, воду. Вода постоянно циркулирует на Земле и атмосфере. Она испаряется из океанов и других водоемов и удерживается в облаках. Затем выпадает в виде дождя или снега. Вода никогда не создается и не уничтожается, она лишь перерабатывается.

Точно так же у нас есть фиксированное количество углерода на Земле и в атмосфере. Мы находимся в нашем собственном пузыре, и, по сути, практически ничто не выходит из нашего мира и не входит в него. Мы не получаем межгалактических поставок необходимых элементов, таких как углерод. Это означает, что весь углерод на Земле и в атмосфере, равен тому количеству, которое у нас всегда было. Итак, когда формируются новые организмы, необходим углерод для образования ключевых молекул, таких как белок и ДНК. Но откуда он берется? Вот тут и начинает работать круговорот углерода в природе.

Как упоминалось ранее, углерод находится во многих различных формах и в разных местах. Мы уже знаем, что он находится в нашей атмосфере. Но только некоторые организмы действительно могут использовать атмосферный углерод. Давайте начнем с рассмотрения процесса фотосинтеза, посредством которого углерод в атмосфере в форме CO2 используется растениями.

Растения могут производить органические вещества, используя несколько простых ингредиентов: CO2, воду (или H2O) и солнечную энергию. Это можно представить следующим уравнением:

6CO2 (диоксид углерода) + 6H2O (вода) + солнечный свет → C6H12O6 (углевод) + 6O2 (кислород)

Теперь вы можете видеть, что в процессе фотосинтеза атомы углерода были взяты из углекислого газа и использованы для создания C6H12O6 или глюкозы. И куда пойдет углерод дальше?

Подумайте, кто может есть растения. Например, люди, которые должны добывать себе пищу, чтобы выжить. Итак, когда мы едим растительные продукты, мы получаем из них глюкозу. Когда мы едим мясо, мы также можем получить глюкозу, так как животные питаются растениями.

После переваривания глюкоза из растения расщепляется в наших клетках для выработки энергии. Этот процесс называется клеточным дыханием. По сути, это процесс, противоположный фотосинтезу, и его побочным продуктом является CO2. Организмы избавляются от этих отходов, выдыхая их обратно в атмосферу. Каждый раз, когда вы дышите, вы участвуете в круговороте углерода, потому что выдыхаете CO2. Таким образом, вы можете видеть, как углерод движется по всей планете и влияет на каждый организм.

Углерод в ископаемом топливе и деревьях

Некоторое количество углерода в нашем мире находится в подвешенном состоянии сотни или даже миллионы лет. Углерод задерживается в ископаемом топливе, таком как уголь и нефть. Ископаемое топливо состоит из трансформированных останков живых организмов и содержит много энергии. Мы сжигаем ископаемое топливо для получения энергии, и в этом процессе углерод возвращается в атмосферу в форме CO2.

Еще одно место, где углерод задерживается на долгое время — это деревья. Поскольку деревья живут очень долго, углерод не циркулирует, пока дерево не умрет или не сгорит. Затем CO2 выпускается обратно в атмосферу, и цикл продолжается, поскольку этот углерод снова используется растениями для создания пищи.

Разложение и углерод

Другой важный способ круговорота углерода в живых организмах — это разложение. Например, представьте, что сейчас осень, и листья меняют цвет и опадают на землю. Эти листья содержат углерод в виде глюкозы, образующийся в результате фотосинтеза. Когда листья падают на землю, они со временем разлагаются. Разложение высвобождает атомы углерода обратно в почву. И через процесс дыхания, в конечном итоге, этот углерод будет выпущен обратно в атмосферу в виде CO2.

Подведение итогов

Круговорот углерода в природе — это процесс, при котором углерод перемещается между всеми оболочками Земли и живыми организмами. Растения забирают углекислый газ из воздуха и используют его для синтеза питательных веществ. Затем животные едят растения, и углерод накапливается в их телах или выделяется в виде CO2 при дыхании. Углерод также возвращается в атмосферу при сжигании древесины и ископаемого топлива или разложении мертвых организмов.

Не все нашли? Используйте поиск по сайту ↓

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий