Содержание
- Угловое перемещение
- Угловая скорость и угловое ускорение
- Равномерное вращательное движение
- Равноускоренное вращательное движение
- Момент сил
- Примеры решения задач
- Угловое перемещение
- Угловая скорость и угловое ускорение
- Равномерное вращательное движение
- Равноускоренное вращательное движение
- Момент сил
- Примеры решения задач
- 7.3. Частные случаи вращательного движения
- Угловая скорость в двухмерном пространстве
- Векторное представление в трёхмерном пространстве
- Тензорное представление
- Единицы измерения
- Свойства
- Связь с конечным поворотом в пространстве
- Напишите отзыв о статье “Угловая скорость”
- Примечания
- См. также
В этой статье речь пойдет о физических величинах, которые характеризуют вращательное движение тела: угловая скорость, угловое перемещение, угловое ускорение, момент сил.
Твердым телом называют совокупность жестко связанных материальных точек. Когда твердое тело производит вращение относительно какой-либо оси, отдельные материальные точки, из которых оно складывается, двигаются по окружностям разных радиусов.
За определенный промежуток времени, например, за которое тело совершит один оборот, отдельные материальные точки, из которых состоит твердое тело, пройдут разные пути, следовательно, отдельные точки будут иметь разные линейные скорости. Описывать вращение твердого тела с помощью линейных скоростей отдельных материальных точек — сложно.
Угловое перемещение
Однако, анализируя движение отдельных материальных точек, можно установить, что за одинаковый промежуток времени все они поворачиваются вокруг оси на одинаковый угол. То есть для описания вращения твердого тела удобно пользоваться такой физической величиной, как угловое перемещение:
Угловая скорость и угловое ускорение
Вращательное движение можно охарактеризовать угловой скоростью: ω = ∆φ/∆t.
Угловая скорость характеризует скорость вращения тела и равняется отношению изменения угла поворота ко времени, за которое оно произошло. Измеряется в радианах за секунду: [ω] = рад/с.
Угловая скорость вращения связана с линейной скоростью следующим соотношением: v = Rω, где R – радиус окружности, по которой двигается тело.
Вращательное движение тела характеризуется еще одной физической величиной — угловым ускорением, которое равно отношению изменения угловой скорости ко времени, за которое оно произошло: ε = ∆ω/∆t. Единица измерения углового ускорения: [ε] = рад/с 2 .
Угловая скорость и угловое ускорение являются псевдовекторами, направление которых зависит от направления вращения. Его можно определить по правилу правого винта.
Равномерное вращательное движение
Равномерное вращательное движение осуществляется с постоянной угловой скоростью и описывается такими уравнениями: ε = 0,ω = const, где φ – начальное значение угла поворота.
Равноускоренное вращательное движение
Равноускоренное вращательное движение происходит с постоянным угловым ускорением и описывается такими уравнениями: ε = const,
Во время вращения твердого тела центростремительное ускорение каждой точки этого тела можно найти так: ɑц = v 2 /R = (ωR) 2 /R = ω 2 R.
Когда вращение твердого тела ускоренное, можно найти тангенциальное ускорение его точек по формуле: ɑt = ∆v/∆t= ∆(ωR)/∆t= R(∆ω/∆t) = Rε.
Момент сил
Если, рассматривая физическую проблему, мы имеем дело не с материальной точкой, а с твердым телом, то действие нескольких сил на него, приложенных к различным точкам этого тела, нельзя свести к действию одной силы. В этом случае рассматривают момент сил.
Моментом силы называют произведение силы на плечо. Это векторная величина, и ее находят по формуле: M = RFsinα, где α — угол между векторами R и F. Если на тело действует несколько моментов сил, то их действие можно заменить их равнодействующей, векторной суммой этих моментов: M = M1 + M2 + …+ Mn.
Эксперименты и опыт показывают, что под действием момента силы угловая скорость тела меняется, то есть тело имеет угловое ускорение. Выясним, как зависит угловое ускорение материальной точки (совокупности материальных точек) от приложенного момента сил: F = mɑ,RF = Rma = R 2 mβ,β= M/mR 2 = M/I, где I = mR 2 — момент инерции материальной точки. Заметим, что момент инерции тела имеет зависимость как от массы тела, так и от расположения этой массы относительно оси вращения.
Примеры решения задач
Задача 1. Ротор центрифуги делает 2•10 4 об/мин. После того как выключили двигатель, его вращение прекращается через 8 мин. Найдите угловое ускорение, а также число оборотов, которое совершает ротор с момента выключения двигателя до его полной остановки, считая, что движение ротора равноускоренное.
Читайте также: Водонагреватель электролюкс магнум 80 литров
Переведя данные задачи в систему единиц СИ (n = 333 об/с; t = 480 с), получим: ε = 2π333/480 = 4,36(рад/с 2 ).
Количество оборотов ротора за это время будет: N = φ(t)/2π = πnt/2π = nt = 8•10 4 (об.).
Ответ: угловое ускорение равно 4,36 рад/с 2 ; количество оборотов, сделанное ротором с момента выключения двигателя до его полной остановки, равно 8•10 4 об.
Задача 2. Диск, имеющий массу 1 кг и радиус 20 см, вращается с частотой 120 об. в минуту. Под действием тормозного устройства на край диска начала действовать сила трения 10 Н. Найдите время остановки диска, после того как на него стала действовать сила трения.
Найдем тормозной момент сил, действующий на диск: M = RF.
Найдем угловое ускорение диска: ε = M/I = FR/mR 2 = F/mR.
Найдем время, за которое диск остановится: , где — начальная угловая скорость диска, которая равна 2πv.
Сделаем вычисления: t = 2πv/ ε = 2πvmR/F = 6,28•2•1•0,2/10 = 2,5 (с).
Ответ: время остановки равно 2,5 с.
В этой статье речь пойдет о физических величинах, которые характеризуют вращательное движение тела: угловая скорость, угловое перемещение, угловое ускорение, момент сил.
Твердым телом называют совокупность жестко связанных материальных точек. Когда твердое тело производит вращение относительно какой-либо оси, отдельные материальные точки, из которых оно складывается, двигаются по окружностям разных радиусов.
За определенный промежуток времени, например, за которое тело совершит один оборот, отдельные материальные точки, из которых состоит твердое тело, пройдут разные пути, следовательно, отдельные точки будут иметь разные линейные скорости. Описывать вращение твердого тела с помощью линейных скоростей отдельных материальных точек — сложно.
Угловое перемещение
Однако, анализируя движение отдельных материальных точек, можно установить, что за одинаковый промежуток времени все они поворачиваются вокруг оси на одинаковый угол. То есть для описания вращения твердого тела удобно пользоваться такой физической величиной, как угловое перемещение:
Угловая скорость и угловое ускорение
Вращательное движение можно охарактеризовать угловой скоростью: ω = ∆φ/∆t.
Угловая скорость характеризует скорость вращения тела и равняется отношению изменения угла поворота ко времени, за которое оно произошло. Измеряется в радианах за секунду: [ω] = рад/с.
Угловая скорость вращения связана с линейной скоростью следующим соотношением: v = Rω, где R – радиус окружности, по которой двигается тело.
Вращательное движение тела характеризуется еще одной физической величиной — угловым ускорением, которое равно отношению изменения угловой скорости ко времени, за которое оно произошло: ε = ∆ω/∆t. Единица измерения углового ускорения: [ε] = рад/с 2 .
Угловая скорость и угловое ускорение являются псевдовекторами, направление которых зависит от направления вращения. Его можно определить по правилу правого винта.
Равномерное вращательное движение
Равномерное вращательное движение осуществляется с постоянной угловой скоростью и описывается такими уравнениями: ε = 0,ω = const, где φ – начальное значение угла поворота.
Равноускоренное вращательное движение
Равноускоренное вращательное движение происходит с постоянным угловым ускорением и описывается такими уравнениями: ε = const,
Во время вращения твердого тела центростремительное ускорение каждой точки этого тела можно найти так: ɑц = v 2 /R = (ωR) 2 /R = ω 2 R.
Когда вращение твердого тела ускоренное, можно найти тангенциальное ускорение его точек по формуле: ɑt = ∆v/∆t= ∆(ωR)/∆t= R(∆ω/∆t) = Rε.
Момент сил
Если, рассматривая физическую проблему, мы имеем дело не с материальной точкой, а с твердым телом, то действие нескольких сил на него, приложенных к различным точкам этого тела, нельзя свести к действию одной силы. В этом случае рассматривают момент сил.
Читайте также: Декоративные плитки для стен под камень
Моментом силы называют произведение силы на плечо. Это векторная величина, и ее находят по формуле: M = RFsinα, где α — угол между векторами R и F. Если на тело действует несколько моментов сил, то их действие можно заменить их равнодействующей, векторной суммой этих моментов: M = M1 + M2 + …+ Mn.
Эксперименты и опыт показывают, что под действием момента силы угловая скорость тела меняется, то есть тело имеет угловое ускорение. Выясним, как зависит угловое ускорение материальной точки (совокупности материальных точек) от приложенного момента сил: F = mɑ,RF = Rma = R 2 mβ,β= M/mR 2 = M/I, где I = mR 2 — момент инерции материальной точки. Заметим, что момент инерции тела имеет зависимость как от массы тела, так и от расположения этой массы относительно оси вращения.
Примеры решения задач
Задача 1. Ротор центрифуги делает 2•10 4 об/мин. После того как выключили двигатель, его вращение прекращается через 8 мин. Найдите угловое ускорение, а также число оборотов, которое совершает ротор с момента выключения двигателя до его полной остановки, считая, что движение ротора равноускоренное.
Переведя данные задачи в систему единиц СИ (n = 333 об/с; t = 480 с), получим: ε = 2π333/480 = 4,36(рад/с 2 ).
Количество оборотов ротора за это время будет: N = φ(t)/2π = πnt/2π = nt = 8•10 4 (об.).
Ответ: угловое ускорение равно 4,36 рад/с 2 ; количество оборотов, сделанное ротором с момента выключения двигателя до его полной остановки, равно 8•10 4 об.
Задача 2. Диск, имеющий массу 1 кг и радиус 20 см, вращается с частотой 120 об. в минуту. Под действием тормозного устройства на край диска начала действовать сила трения 10 Н. Найдите время остановки диска, после того как на него стала действовать сила трения.
Найдем тормозной момент сил, действующий на диск: M = RF.
Найдем угловое ускорение диска: ε = M/I = FR/mR 2 = F/mR.
Найдем время, за которое диск остановится: , где — начальная угловая скорость диска, которая равна 2πv.
Сделаем вычисления: t = 2πv/ ε = 2πvmR/F = 6,28•2•1•0,2/10 = 2,5 (с).
Ответ: время остановки равно 2,5 с.
Движение твердого тела, при котором все его точки перемещаются по окружности, центры которой расположены на перпендикулярной этим окружностям неподвижной прямой, называется вращательным. Неподвижная прямая, на которой лежат центры круговых траекторий точек тела, называется его осью вращения. Для образования оси вращения достаточно закрепить какие-либо две точки тела. В качестве примеров вращательного движения тел можно привести движение дверей или створок окон при их открывании или закрывании.
Представим себе тело в виде цилиндра, ось AB которого лежит в подшипниках (рис. 7.3).
Рис. 7.3. К анализу вращательного движения твердого тела
Движением одной какой-либо точки однозначно определить вращательное движение тела нельзя.
Для установления закона вращательного движения тела, по которому можно определять его положение в данный момент, проведем через ось вращения тела связанную только с нею неподвижную полуплоскость НП, а внутри тела отметим подвижную полуплоскость, которая вращается около оси вместе с телом, теперь угол φ, образуемый в каждый данный момент времени полуплоскостями НП и ПП, точно определяет положение тела в пространстве (см. рис. 7.3). Угол φ называется углом поворота и выражается в радианах. Чтобы определять положение тела в пространстве в любой момент времени, необходимо знать зависимость между углом поворота φ и временем t, т. е. знать закон вращательного движения тела:
Читайте также: Дом из бетонных блоков плюсы и минусы
Быстрота изменения угла поворота во времени характеризуется величиной, которая называется угловой скоростью.
Представим, что в некоторый момент времени t положение вращающегося тела определяется углом поворота φ, а в момент t + Δt – углом поворота φ + Δ φ. Следовательно, за время Δt тело повернулось на угол Δ φ, и величина
называется средней угловой скоростью.
Единицей угловой скорости является 1 рад/с. Характеристикой быстроты изменения угловой скорости служит угловое ускорение, обозначаемое . Среднее ускорение ;
.
Единица углового ускорения 1 рад/с 2 .
Условимся угол поворота, отсчитываемый против хода часовой стрелки, считать положительным, а отсчитываемый по ходу часовой стрелки – отрицательным.
Рис. 7.4. К определению вида вращательного движения
Векторы и – это скользящие векторы, которые направлены по оси вращения, чтобы, глядя из конца вектора (или ), видеть вращение, происходящее против часовой стрелки.
Если векторы и направлены в одну сторону (рис. 7.4, а), то вращательное движение тела ускоренное – угловая скорость возрастает. Если векторы и направлены в противоположные стороны, то вращение тела замедленное– угловая скорость уменьшается (рис. 7.4, б).
7.3. Частные случаи вращательного движения
1.Равномерное вращательное движение. Если угловое ускорение и, следовательно, угловая скорость
, (7.1)
то вращательное движение называется равномерным. Из выражения (7.1) после разделения переменных получим
Если при изменении времени от 0 до t угол поворота изменялся от φ (начальный угол поворота) до φ, то, интегрируя уравнение в этих пределах:
получаем уравнение равномерного вращательного движения
,
которое в окончательном виде записывается так:
.
Если , то
.
Таким образом, при равномерном вращательном движении угловая скорость
или при
.2. Равнопеременное вращательное движение. Если угловое ускорение
(7.2)
то вращательное движение называется равнопеременным. Производя разделение переменных в выражении (7.2):
и приняв, что при изменении времени от 0 до t угловая скорость изменилась от (начальная угловая скорость) до , проинтегрируем уравнение в этих пределах:
или ,
т. е. получим уравнение
(7.3)
выражающее значение угловой скорости в любой момент времени.
Закон равнопеременного вращательного движения или, с учетом уравнения (7.3):
Полагая, что в течение времени от 0 до t угол поворота изменялся от до, проинтегрируем уравнение в этих пределах:
или
Уравнение равнопеременного вращательного движения в окончательном виде
(7.4)
Первую вспомогательную формулу получим, исключив из формул (7.3) и (7.4) время:
(7.5)
Исключив из тех же формул угловое ускорение , получим вторую вспомогательную формулу:
(7.6)
где – средняя угловая скорость при равнопеременном вращательном движении.
Когда и , формулы (7.3)–(7.6) приобретают более простой вид:
В процессе конструирования угловое перемещение выражают не в радианах, а просто в оборотах.
Угловая скорость, выражаемая количеством оборотов в минуту, называется частотой вращения и обозначается n. Установим зависимость между (с –1 ) и n (мин –1 ). Так как , то при n (мин –1 ) за t = 1 мин = 60 с угол поворота . Следовательно:
.
При переходе от угловой скорости (с –1 ) к частоте вращения n (мин –1 ) имеем
Поделись знанием: Материал из Википедии — свободной энциклопедии Перейти к: навигация, поиск
Угловая скорость | |
omega | |
Размерность |
T−1 |
---|---|
Единицы измерения | |
СИ |
рад/с |
СГС |
рад/с |
Другие единицы |
градус/с об/с об/мин |
Углова́я ско́рость — величина, характеризующая скорость вращенияматериальной точки вокруг центра вращения. Для вращения в двухмерном пространстве угловая скорость выражается числом, в трёхмерном пространстве представляется псевдовектором (аксиальным вектором), а в общем случае — кососимметрическим тензором[1].
Угловая скорость в двухмерном пространстве
Векторное представление в трёхмерном пространстве
В трёхмерном пространстве вектор угловой скорости по величине равен углуповорота точки вокруг центра вращения за единицу времени:
- omega=frac{dvarphi}{dt},
а направлен по оси вращения согласно правилу буравчика, то есть в ту сторону, в которую ввинчивался бы буравчик или винт с правой резьбой, если бы вращался в эту сторону. Другой мнемонический подход для запоминания взаимной связи между направлением вращения и направлением вектора угловой скорости состоит в том, что для условного наблюдателя, находящегося на конце вектора угловой скорости, выходящего из центра вращения, само вращение выглядит происходящим против часовой стрелки.
Угловая скорость является аксиальным вектором (псевдовектором). При отражении осей системы координат компоненты обычного вектора (например, радиус-вектора точки) меняют знак. В то же время компоненты псевдовектора (в частности, угловой скорости) при таком преобразовании координат остаются прежними.
Тензорное представление
Единицы измерения
Единица измерения угловой скорости, принятая в Международной системе единиц (СИ) и в системах СГС и МКГСС, — радиан в секунду (русское обозначение: рад/с, международное: rad/s)[2][Комм 1]. В технике также используются обороты в секунду, намного реже — градусы, минуты, секунды дуги в секунду, грады в секунду. Часто в технике используют обороты в минуту — это идёт с тех времён, когда частоту вращения тихоходных паровых машин определяли просто на глаз, подсчитывая число оборотов за единицу времени.
Свойства
Вектор мгновенной скорости любой точки абсолютно твёрдого тела, вращающегося с угловой скоростью vec omega, определяется формулой:
- vec v = [ vec omega, vec r ],
где vec r — радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определённом расстоянии (радиусе) r от оси вращения можно считать так: v = r omega. Если вместо радианов применять другие единицы измерения углов, то в двух последних формулах появится множитель, не равный единице.
- В случае плоского вращения, то есть когда все векторы скоростей точек тела всегда лежат в одной плоскости («плоскости вращения»), угловая скорость тела всегда перпендикулярна этой плоскости, и по сути — если плоскость вращения заведомо известна — может быть заменена скаляром — проекцией на ось вращения, то есть на прямую, ортогональную плоскости вращения. В этом случае кинематика вращения сильно упрощается. Однако в общем случае угловая скорость может менять со временем направление в трёхмерном пространстве, и такая упрощенная картина не работает.
- Движение с постоянным вектором угловой скорости называется равномерным вращательным движением (в этом случае угловое ускорение равно нулю). Равномерное вращение является частным случаем плоского вращения.
- Производная угловой скорости по времени есть угловое ускорение.
- Угловая скорость (рассматриваемая как свободный вектор) одинакова во всех инерциальных системах отсчёта, отличающихся положением начала отсчёта и скоростью его движения, но двигающихся равномерно прямолинейно и поступательно друг относительно друга. Однако в этих инерциальных системах отсчёта может различаться положение оси или центра вращения одного и того же конкретного тела в один и тот же момент времени (то есть будет различной «точка приложения» угловой скорости).
- В случае движения точки в трёхмерном пространстве можно написать выражение для угловой скорости этой точки относительно выбранного начала координат:
- vecomega = frac{vec r times vec v}{(vec r,vec r )}, где vec r — радиус-вектор точки (из начала координат), vec v — скорость этой точки, vec r times vec v — векторное произведение, (vec r,vec r ) — скалярное произведение векторов. Однако эта формула не определяет угловую скорость однозначно (в случае единственной точки можно подобрать и другие векторы vec omega, подходящие по определению, по-другому — произвольно — выбрав направление оси вращения), а для общего случая (когда тело включает более одной материальной точки) — эта формула не верна для угловой скорости всего тела (так как даёт разные vec omega для каждой точки, а при вращении абсолютно твёрдого тела вектора угловой скорости вращения всех его точек совпадают). Однако в двумерном случае (случае плоского вращения) эта формула вполне достаточна, однозначна и корректна, так как в этом частном случае направление оси вращения заведомо однозначно определено.
- В случае равномерного вращательного движения (то есть движения с постоянным вектором угловой скорости) абсолютно твёрдого тела декартовы координаты точек вращающегося так тела совершают гармонические колебания с угловой (циклической) частотой, равной модулю вектора угловой скорости.
- При измерении угловой скорости в оборотах в секунду (об/с) модуль угловой скорости равномерного вращательного движения совпадает с частотой вращенияf, измеренной в герцах (Гц), то есть в таких единицах omega = f. В случае использования обычной физической единицы угловой скорости — радианов в секунду — модуль угловой скорости численно связан с частотой вращения так: omega = {2pi f}. Наконец, при использовании градусов в секунду численная связь с частотой вращения будет: omega = {360^circ f}.
Связь с конечным поворотом в пространстве
- Пусть поворот, изменяющийся во времени, задан величиной угла ;theta (t) и ортом оси конечного поворота в пространствеvec{n}(t). Тогда угловая скорость, соответствующая этому повороту, равна
- vec{omega} = vec{n} dot{theta} + dot{vec{n}} sin theta + vec{n} times dot{vec n} (1 – cos theta).
- Если поворот задан матрицей поворотаT_{ij} = n_i n_j + (delta_{ij} – n_i n_j) cos theta – n_k epsilon_{ijk} sin theta, где ;delta_{ij} — символ Кронекера, varepsilon_{ijk} — символ Леви-Чивиты (суммирование ведётся по правилу Эйнштейна от 1 до 3), выражение для элементов которой через ;theta и vec{n} могут быть получены, например, с помощью формулы Родрига, то угловая скорость равна
- omega_i = frac{1}{2} varepsilon_{ijk} T_{jn} dot{T}_{kn} .
- Если для описания поворота используется кватернион, выражаемый через угол ;theta и орт оси поворота vec{n} как q = bigl(cos (theta/2), vec{n} sin (theta/2)bigr), то угловая скорость находится из выражения left(0, vec{omega}right) = 2 , dot{q} , overline {q}.
- В случае, когда поворот описывается с помощью вектора vec{V} = vec{n} operatorname{tg} (theta/4), изменяющегося во времени, обозначим vec{W} = d vec{V} / d t bigl(W_i = d V_i / d tbigr), а также T_{ij}^{1/2} = n_i n_j + (delta_{ij} – n_i n_j) cos (theta/2) – n_k epsilon_{ijk} sin (theta/2) — матрица половинного поворота ;bigl(T_{ij}^{1/2} T_{jk}^{1/2} = T_{ik}bigr),;V^2 — квадрат модуля вектора vec{V}. Тогда угловая скорость:
- omega_i = frac{4 T_{ij}^{1/2} W_{j}}{1 + V^2}.
Напишите отзыв о статье “Угловая скорость”
Примечания
Комментарии
- ↑Плоский угол, определяемый как отношение длины дуги окружности, заключённой между двумя радиусами, к длине радиуса, безразмерен, поэтому единицей измерения плоских углов является число «один», а единицей измерения угловой скорости в системе СИ — с−1. Однако, в случае плоских углов единице «один» присвоено специальное наименование «радиан» для того, чтобы в каждом конкретном случае облегчить понимание того, какая именно физическая величина имеется в виду[3].
Источники
- ↑Александр Юльевич Ишлинский, Борис Викторович Раушенбах. Классическая механика и силы инерции. Наука, 1987. С. 239.
- ↑Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 98. — 240 с. — ISBN 5-7050-0118-5.
- ↑[www.bipm.org/en/publications/si-brochure/section2-2-3.html Units for dimensionless quantities, also called quantities of dimension one] (англ.). SI Brochure: The International System of Units (SI). Международное бюро мер и весов (2006). Проверено 29 января 2016.
См. также
⇐ ПредыдущаяСтр 2 из 11Следующая ⇒
Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:
Вектор ω направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор dφ (рис. 2). Размерность угловой скорости dim ω = Т-1, а ее единица — радиан в секунду (рад/с).
Линейная скорость точки (см. рис. 1)
т.е
v=ωR
В векторном виде формулу для линейной скорости можно написать как векторное произведение:
При этом модуль векторного произведения, по определению, равен ωRsin(ω, R), а направление совпадает с направлением поступательного движения правого винта его вращения от ω к R.
Если ω=const, то вращение равномерное и его можно характеризовать периодом вращения Т – временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2π. Так как промежутку времени Δt=Т соответствует Δφ=2π, то ω=2π/T, откуда
Т = 2π/ω.
Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:
n= 1/T = ω/(2π),
ω = 2πn.
Угловым ускорением называется векторная величина, равная первой производной yгловой скорости по времени:
При вращении тела вокруг неподвижной оси вектор углового ускорения ε направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор ε сонаправлен вектору ω (рис. 3), при замедленном – противонаправлен ему (рис. 4).
|
Мгновенная ось вращения.
МГНОВЕННАЯ ОСЬ ВРАЩЕНИЯ
прямая, неподвижная в данный момент в нек-рой инерциальной системе отсчёта, относительно к-рой сложное движение твёрдого тела в этот момент можно представить как вращат. вокруг этой прямой. М. о. в. может лежать как внутри тела, так и вне его. С течением времени положение М. о. в. изменяется относительно как неподвижной системы отсчёта, так и системы отсчёта, движущейся вместе с телом.
Первый закон Ньютона и инерциальные системы отсчета
К выводу о существовании явления инерции впервые пришел Галилей, а затем Ньютон. Этот вывод формулируется в виде первого закона Ньютона (закона инерции): существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на нею внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.
Системы отсчета, в которых выполняется первый закон Ньютона, называют инерциальными. Следовательно, инерциальными являются такие системы отсчета, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.
Системы отсчета, в которых первый закон Ньютона не выполняется, называют неинерциальными. К таким системам относится любая система отсчета, движущаяся с ускорением относительно инерциальной системы отсчета.
Дата добавления: 2018-02-18; просмотров: 1735; Мы поможем в написании вашей работы!
⇐ Предыдущая12345678910Следующая ⇒
Мы поможем в написании ваших работ!
Информация к новости
- Просмотров: 0
- Автор: PavlovAlexey
- Дата: 6-11-2019, 09:10
6-11-2019, 09:10 <!DOCTYPE html> Угловая скорость w:рад/с Радиус R: Линейная скорость V: Радиус R: Линейная скорость V: Угловая скорость w:рад/с
Простой инженерный калькулятор линейной и угловой скоростей, который позволит найти скорость вала, радиус вала, совершаемое количество оборотов и центростремительное ускорение.
Порядок работы:1. Выбрать в выпадающем меню то, что вы хотите найти (линейная скорость, угловая скорость или радиус вала)2. Заполнить соответствующие значения ниже согласно рисунка3. Нажать кнопку «Расчет»
Для справки:– 1 радиан = 57.2958 градуса– 3.14 радиан (число ПИ) = 180 градусов – пол окружности- 6.28 радиан (2*ПИ) = 360 градусов – целый круг
От автора:Если данный калькулятор скоростей был вам полезен – не забывайте делиться им с друзьями и коллегами.
– Вернуться Обсуждение на форуме Тест: 4 вопроса 1. Используя какую формулу можно найти линейную скорость движения точек экватора Земли, зная её радиус? 2п/T 2пR/T 2п*T 2пR*T 2. Используя какую формулу можно найти угловую скорость движения точек экватора Земли? 2п/T 2пR/T 2п*T 2пR*T 3. Экваториальный радиус земли равен… 6500 км 6000 км 6370 км 6240 км 4. Отношение угла поворота ко времени, за которое поворот совершен – это угловая скорость линейная скорость скорость оборота скорость вращения вокруг оси
Как найти линейную и угловую скорости движения точек экватора Земли по ее радиусу? Объясните как можно подробнее.
Для решения этой типовой задачи нам понадобятся две вещи: радиус окружности и период обращения точки по ней. В самой задаче этих данных, конечно же, нет, но подразумевается, что они нам известны. Ну или будут известны, когда мы найдем учебник или, еще лучше, спросим у гугла.
Итак, экваториальный радиус Земли – 6370 км, а период вращения вокруг своей оси – 24 часа.
Формулу линейной скорости выведем так: Если радиус равен RRR, то точка за один оборот пройдет путь, равный длине окружности, т.е. равный 2πR2πR2πR. Почему так? Ответ в геометрии за седьмой класс.
Далее. Путь этот она пройдет за время, равное периоду TTT, а значит v=2πR/Tv = 2πR/Tv=2πR/T.
Ну а что такое угловая скорость? Это отношение угла поворота ко времени, за которое поворот совершен.
Полный оборот по окружности составляет 2π2π2π радиан по определению. Угловая скорость зависит от периода вращения, следовательно ω=2π/Tω = 2π/Tω=2π/T. К сожалению, эта формула только для равномерного движения. К счастью, это наш случай.
Подставим известные величины в формулы и получим:
v=2πR/T=2⋅3.1415⋅6370⋅13м/24⋅62с=40022710м/86400с=463.22v = 2πR/T = 2 cdot 3.1415 cdot6370cdot10^3 м/ 24 cdot60^2 с = 40 022 710м/86 400с = 463.22v=2πR/T=2⋅3.1415⋅637⋅13м/24⋅62с=42271м/864с=463.22м/с
ω=2⋅3.1415/24⋅62с=6.283рад/86400с=7,27⋅1−5ω = 2 cdot 3.1415/24cdot 60^2 с = 6.283рад/86 400с = 7,27cdot10^{-5}ω=2⋅3.1415/24⋅62с=6.283рад/864с=7,27⋅1−5 рад/с
Ответ: ν=463.22ν = 463.22ν=463.22 м/с, w=7,27⋅1−5w = 7,27cdot10^{-5}w=7,27⋅1−5 рад/с.
Теги: физика, механика, кинематика, вращение, задача
ли со статьей или есть что добавить?