Хлоропласты — особенности строения, функции и роль в фотосинтезе

—>

Фотосинтез растений осуществляется в хлоропластах: обособленных двухмембранных зеленых органеллах клетки. Кроме того, в растительной клетке имеются еще два вида пластид: лейкопласты – бесцветные, хромопласты – оранжевые. В лейкопластах синтезируется и отлагается в запас крахмал, в хромопластах накапливаются каратиноиды. Строение хлоропласта: Строение хлоропласта: 1 — внешняя мембрана; 2 — внутренняя мембрана; 3 — крахмальное зерно; 4 — ДНК; 5 — тилакоиды стромы (фреты); 6 — тилакоид граны; 7 — матрикс (строма); 8 – внутритилакоидное пространство (люмен).

Внешняя оболочка хлоропластов отграничивает его внутреннее содержимое от цитоплазмы. Это барьер, осуществляющий контроль обмена веществ между хлоропластом и цитоплазмой. Оболочка состоит из 2-х мембран: Наружная мембрана – проницаемая для большинства органических· и неорганических молекул. Она содержит специальные транслокаторы белков, через которые поступают пептиды из цитоплазмы в хлоропласт. Внутренняя мембрана – избирательно проницаема и осуществляет· контроль над транспортом белков, липидов, органических кислот и углеводов между хлоропластом и цитоплазмой. Участвует в формировании внутренней мембранной системы хлоропластов. Строма – гидрофильный, слабоструктурированный матрикс хлоропластов, содержащий водорастворимые органические соединения, а также неорганические ионы. В строме осуществляются реакции фотосинтетической ассимиляции углерода. В строме находятся: кольцевая ДНК, рибосомы, ферменты матричного синтеза. Внутренняя мембранная система хлоропластов – здесь протекают световые реакции фотосинтеза. Мембраны образуют тилакоиды, которые либо тесно соприкасаются друг с другом и уложены в стопки, или граны (тилакоиды гран – 6), либо пронизывают строму, соединяя граны между собой (тилакоиды стромы (фреты)). Собственно образующие их мембраны называют мембранами (ламеллами) гран и мембранами (ламеллами) стромы. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.

Значение сложной организации внутренних мембран хлоропластов: Благодаря значительному мембранному пространству достигается· увеличение числа функциональных единиц, способных осуществлять световые реакции фотосинтеза. Единство внутренней системы хлоропластов позволяет отдельным· компонентам мембраны мигрировать латерально и вступать между собой в структурный и функциональный контакт. Это необходимо для переноса энергии квантов света в реакционные центры, а также для транспорта электронов по электрон-транспортной цепи в ходе световых реакций фотосинтеза. Разделение мембраной всего внутреннего пространства хлоропластов на· два компонента – стромальное и люмен – позволяет создавать электрохимические градиенты ионов между ними. Создание электрохимического градиента Н+ на внутренних мембранах хлоропластов – важный этап в трансформации энергии квантов света в энергию макроэргических связей АТФ. Образование гранальной структуры внутри хлоропластов значительно· повышает общую эффективность фотосинтеза и создает дополнительные возможности для регуляции световых реакций. Сегрегация (разделение) в стромальных или гранальных тилакоидах компонентов мембран с различными функциями позволяет добиться определенной независимости их функционирования. Это итог длительного эволюционного процесса – впервые появилась у зеленых водорослей.

Основные этапы образования хлоропластов. Предшественники хлоропластов – пропластиды. Пропластиды образуются из инициальных частиц (зачатков), содержащихся в меристиматических клетках. Формирование хлоропласта может осуществляться двумя путями: I путь – непосредственное преобразование пропластид в хлоропласты. Реализуется при росте растений в условиях нормального соотношения дня и ночи. Пропластиды

меристиматических клеток листа превращаются в хлоропласты параллельно с ростом и дифференцировкой клеток листа. Биогенез хлоропластов сопровождается формированием тилакоидных мембран хлоропластов при участии внутренней мембраны оболочки пропластиды. II путь – образование хлоропластов из этиопластов. Этиопласты – органеллы клеток растения, растущего в отсутствие света. Они образуются из пропластид и имеют некоторвые особенности внутреннего строения: содержат проламеллярное тело, сформированное в результате скопления ограниченных мембраной пузырьков и разветвленных трубчатых структур. Мембраны проламеллярного тела содержат небольшие количества каротиноидов и предшественника хлорофилла – протохлорифиллида. Формирование тилакоидных мембран хлоропластов в этиопластах происходит при участии мембран проламелярного тела в ответ на освещение. Выделяют три этапа фотоморфогенеза хлоропластов из этиопластов: 1 этап: Из трубчатых элементов проламелярных тел образуются крупные пузырьки, располагающиеся по радиусу. Этот процесс сопровождается образованием хлорофилла из имеющегося в этиопластах протохлорофиллида. 2 этап: Происходит накопление белков, липидов, пигментов и самосборка мембран тилакоидов. 3 этап: Происходит дифференциация гран. Эта стадия совпадает с интенсивным синтезом хлорофилла. Для формирования гран необходим высокий уровень содержание хлорофиллов в хлоропластах. Таким образом, формирование хлоропласта происходит только на свету. Непосредственно из пропластид могут образовываться и бесцветные пластиды (лейкопласты-амилопласты). Лейкопласты чаще всего локализованы в клетках запасающих тканей. Подобно пропластидам они характеризуются слабо развитой ламеллярной структурой. Во многих случаях в лейкопластах ламеллы сохраняют связь с внутренней оболочкой. В строме лейкопластов располагаются крахмальные зерна, осмиофильные глобулы, белковые включения. Амилопласты могут превращаться в хлоро- пласты, например, как это происходит при позеленении клубней картофеля на свету. Хромопласты — это, по-видимому, результат деградации хлоропластов, при которой ламеллярная структура частично разрушается. Одновременно происходит образование осмиофильных глобул, содержащих каротиноиды. Эти глобулы располагаются сплошным слоем под оболочкой пластид. Регуляция биогенеза хлоропластов. Биогенез хлоропластов повергается контролю и регуляции со стороны внешних и внутренних факторов. Выделяю следующие виды регуляции: Фоторегуляция связана с активацией светом синтеза пигментов и белков, входящих в светособирающие комплексы. Контроль синтеза фотосинтетических пигментов основан на регуляции светом активности осуществляющих его ферментов. Фоторегуляция синтеза белков хлоропластов осуществляется на генетическом уровне. В регуляции биогенеза хлоропластов участвуют сигнальные фоторецепторные системы – фитохромная система и рецепторы синего света. Гормональная регуляция связана с влиянием на синтез пигментов и белков хлоропластов ряда фитогормонов. Генетическая регуляция включает контроль биогенеза хлоропластов на всех уровнях реализации генетической информации, включая транскрипцию, трансляцию, процессинг, транспорт белков, сборку мультипептидных комплексов. Обнаружена регуляция экспрессии ряда генов ядерной ДНК, обслуживающих хлоропласт светом, гормонами, продуктами фотосинтеза



Описание файла

Документ из архива «Строение и функции хлоропластов», который расположен в категории «рефераты». Всё это находится в предмете «биология» из раздела «Студенческие работы», которые можно найти в файловом архиве Студент. Не смотря на прямую связь этого архива с Студент, его также можно найти и в других разделах. Архив можно найти в разделе «рефераты, доклады и презентации», в предмете «биология» в общих файлах.

Онлайн просмотр документа «10671»

Текст из документа «10671»

Федеральное Агентство науки и образования.

Сибирский Федеральный Университет.

Институт Фундаментальной Биологии и Биотехнологии.

Кафедра биотехнологии.

РЕФЕРАТ

На тему: Строение и функции хлоропластов.

Выполнила: студентка

31гр.Шестопалова Н.С.

Проверила:

доцент кафедры

биотехнологии

д.б.н. Голованова Т.И.

Красноярск

2008г.

Содержание:

1. Введение………………………………………………………………………3

2. Обзор литературы……………………………………………………….4

2.1 Происхождение хлоропласта…………………………………………4

2.2 Развитие хлоропласта из пропластиды…………………………….5

2.3 Строение хлоропластов……………………………………………..7

2.4 Генетический аппарат хлоропластов……………………………….9

3. Функции хлоропластов………………………………………………11

4. Вывод…………………………………………………………………16

5. Список используемой литературы………………………………….17

Введение:

Пластиды –это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов(высшие растения, низшие водоросли, некоторые одноклеточные организмы). У высших растений найден целый набор различных пластид( хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой которая осуществляет фотосинтетические процессы, является хлоропласт.

2.Обзор литературы:

2.1Происхождение хлоропласта.

Общепринятым в настоящее время является представление об эндосимбиотическом происхождении хлоропластов в клетках растений. Хорошо известно, что лишайники представляют собой форму сожительства (симбиоза) гриба и водоросли, при котором зеленые одноклеточные водоросли живут внутри клеток гриба. Предполагают, что таким же путем несколько миллиардов лет назад фотосинтезирующие цианобактерии (синезеленые водоросли) проникли в эукариотические клетки и затем в ходе эволюции потеряли свою автономность, передав большое число важнейших генов в ядерный геном. В результате независимая бактериальная клетка превратилась в полуавтономную органеллу, сохранившую главную исходную функцию — способность к фотосинтезу, однако формирование фотосинтетического аппарата оказалось под двойным ядерно-хлоропластным контролем. Под ядерный контроль перешли деление хлоропластов и сам процесс реализации его генетической информации, которая осуществляется в цепи событий ДНК РНК белок.

Неоспоримые доказательства прокариотического происхождения хлоропластов получены при анализе нуклеотидных последовательностей их ДНК. ДНК рибосомальных генов имеет высокую степень сродства (гомологию) у хлоропластов и бактерий. Сходная нуклеотидная последовательность обнаружена для цианобактерий и хлоропластов в генах АТФсинтазного комплекса, а также в генах аппарата транскрипции (гены субъединиц РНК-полимеразы) и трансляции. Регуляторные элементы хлоропластных генов — промоторы, локализованные в области 35-10 пар нуклеотидов до начала транскрипции, определяющие считку генетической информации, и терминальные нуклеотидные последовательности, определяющие ее прекращение, организованы в хлоропласте, как упоминалось выше, по бактериальному типу. И хотя миллиарды лет эволюции внесли массу изменений в хлоропласт, они не изменили нуклеотидную последовательность хлоропластных генов, и это является неоспоримым доказательством происхождения хлоропласта в зеленом растении от прокариотического предка, древнего предшественника современных цианобактерий.

2.2Развитие хлоропласта из пропластиды.

Хлоропласт развивается из пропластиды — маленькой бесцветной органеллы (несколько микрон в поперечнике), окруженной двойной мембраной и содержащей характерную для хлоропласта кольцевую молекулу ДНК. Пропластиды не имеют внутренней мембранной системы. Они плохо изучены ввиду их крайне малых размеров. Несколько пропластид содержится в цитоплазме яйцеклетки. Они делятся и передаются от клетки к клетке в ходе развития зародыша. Этим объясняется то обстоятельство, что генетические признаки, связанные с ДНК пластид, передаются только по материнской линии (так называемая цитоплазматическая наследственность).

В ходе развития хлоропласта из пропластиды внутренняя мембрана ее оболочки образует «впячивания» внутрь пластиды. Из них развиваются мембраны тилакоидов, которые создают стопки — граны и ламеллы стромы. В темноте пропластиды дают начало формированию предшественника хлоропласта (этиопласта), который содержит структуру, напоминающую кристаллическую решетку. При освещении эта структура разрушается и происходит формирование характерной для хлоропласта внутренней структуры, состоящей из тилакоидов гран и ламелл стромы.

В клетках меристемы содержится несколько пропластид. При формировании зеленого листа они делятся и превращаются в хлоропласты. Например, в клетке закончившего рост листа пшеницы содержится около 150 хлоропластов. В органах растений, запасающих крахмал, например в клубнях картофеля, крахмальные зерна формируются и накапливаются в пластидах, называемых амилопластами. Как выяснилось, амилопласты, как и хлоропласты, образуются из тех же пропластид и содержат такую же ДНК, как хлоропласты. Они формируются в результате дифференцировки пропластид по другому пути, чем у хлоропластов. Известны случаи превращения хлоропластов в амилопласты и наоборот. Например, часть амилопластов превращается в хлоропласты при позеленении клубней картофеля на свету.В ходе созревания плодов томатов и некоторых других растений, а также в лепестках цветков и осенних красных листьях хлоропласты превращаются в хромопласты — органеллы, содержащие оранжевые пигменты каротиноиды. Такое превращение связано с разрушением структуры тилакоидов гран и приобретением органеллой совершенно иной внутренней организации. Эту перестройку пластиде диктует ядро, и она осуществляется с помощью особых белков, кодируемых в ядре и синтезируемых в цитоплазме. Например, кодируемый в ядре 58 кДа полипептид, образующий комплекс с каротиноидами, составляет половину всего белка мембранных структур хромопласта. Так, на основе одной и той же собственной ДНК в результате ядерно-цитоплазматического влияния пропластида может развиваться в зеленый фотосинтезирующий хлоропласт, белый, содержащий крахмал амилопласт или оранжевый, заполненный каротиноидами хромопласт. Между ними возможны превращения. Это интересный пример различных путей дифференцировки органелл на основе одной и той же собственной ДНК, но под влиянием ядерно-цитоплазматического «диктата».

2.3Строение хлоропласта.

Хлоропласты — пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней. Обе мембраны имеют толщину около 7нм, они отделены друг от друга межмембранным пространством около 20-30нм. Внутренняя мембрана хлоропластов, как и других пластид образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это- мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Связь внутренней мембраны хлоропласта с мембранными структурами внутри него хорошо прослеживается на примере мембран ламелл стромы. В этом случае внутренняя мембрана хлоропласта образует узкую (шириной около 20нм.) складку, которая может простираться почти через всю пластиду. Таким образом, ламелла стромы может представлять собой плоский полый мешок или же иметь вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно и не образуют связей между собой.

Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами. Число тилакоидов на одну грану варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом как бы связывают между собой отдельные граны хлоропластов. Однако полости камер тилакоидов всегда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы.

В матриксе ( строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.

В хлоропластах содержатся различные пигменты. В зависимости от вида растений это:

хлорофилл:

— хлорофилл А (сине-зеленый) — 70 % (у высших растений и зеленых водорослей);

— хлорофилл В (желто-зеленый) — 30 % (там же);

— хлорофилл С, D и E встречается реже — у других групп водорослей;

Иногда зеленый цвет маскируется другими пигментами хлоропластов (у красных и бурых водорослей) или клеточного сока (у лесного бука). Клетки водорослей содержат одну или несколько различной форм хлоропластов.

Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.

2.4Генетический аппарат хлоропластов.

Хлоропласт имеет собственную ДНК, то есть собственный геном. В отличие от линейных молекул ДНК в хромосомах ядра хлоропластная ДНК (хлДНК) представляет собой замкнутую кольцевую двуспиральную молекулу. Ее размеры варьируют у разных видов растений преимущественно в интервале от 130 тыс. до 160 тыс. пар оснований. В настоящее время полностью расшифрована нуклеотидная последовательность хлДНК ряда видов, в том числе табака и риса. При этом обнаружены общие принципы организации хлоропластной ДНК и ее консервативность (неизменность первичной структуры) в ходе эволюции. хлДНК содержит около 130 генов. В ней представлены по два гена четырех типов рибосомальных РНК (рРНК), гены всех транспортных РНК (около 30 видов), гены рибосомальных белков (около 20), гены субъединиц РНК-полимеразы — фермента, осуществляющего синтез РНК на хлДНК. Хлоропластный геном кодирует около 40 белков тилакоидной мембраны, участвующих в формировании комплексов электрон-транспортной цепи [1]. Это составляет около половины входящих в них белков. Остальные белки тилакоидной мембраны кодируются в ядре. хлДНК содержит ген большой субъединицы ключевого фермента фотосинтеза РБФК.

По организации генетический аппарат хлоропластов имеет много общего с генетическим аппаратом бактерий. По прокариотическому типу организованы промоторы, регулирующие начало транскрипции и локализованные в области 35-10 пар нуклеотидов до точки начала транскрипции, и терминаторы, определяющие ее окончание. Вместе с тем в отличие от прокариот в ДНК хлоропластов обнаружены интроны, характерные для генов эукариот, — транскрибируемые области гена, не несущие информации о структуре белка. Как известно, интроны вырезаются из первичного транскрипта, а смысловые участки (экзоны) сшиваются между собой (сплайсинг) в ходе созревания (процессинга) РНК. Некоторые эукариотические черты обнаружены и в промоторах отдельных хлоропластных генов.

Имея собственный генетический аппарат, хлоропласт обладает и собственной белоксинтезирующей системой, отличающейся от белоксинтезирующей системы цитоплазмы, в которой синтез белка идет на матричных РНК (мРНК), синтезированных в ядре. Цитоплазматические рибосомы принадлежат к рибосомам эукариотического типа. Константа их седиментации, отражающая скорость их осаждения в растворе при ультрацентрифугировании, составляет 80 единиц Сведберга — 80S. В отличие от них хлоропластные рибосомы мельче. Они относятся к 70S типу, характерному для прокариот. Вместе с тем по набору рибосомальных белков хлоропластные рибосомы отличаются от прокариотических. Хлоропластный синтез белка, подобно бактериальному, подавляется антибиотиком — хлорамфениколом (левомицитином), который не действует на синтез белка на 80S эукариотических рибосомах. Синтез белка на 80S рибосомах подавляется другим ингибитором — циклогексимидом, который не влияет на белковый синтез на 70S рибосомах бактерий и хлоропластов. Используя поочередно два этих ингибитора, можно установить, где в растительной клетке происходит синтез того или иного белка — в хлоропласте или цитоплазме. Исследовать особенности хлоропластного синтеза РНК и белка можно в суспензии изолированных хлоропластов. При этом легко убедиться, что в хлоропласте синтез РНК и белка на свету не нуждается в поступлении макроэргических соединений извне, так как эти процессы используют АТФ, образованную в фотосинтетических реакциях, протекающих в тилакоидных мембранах. Поэтому синтез РНК и белка в хлоропластах резко активируется светом.

Итак, в растительной клетке хлоропласт обладает собственным геномом (совокупность генов) и собственным аппаратом реализации генетической информации путем синтеза РНК и белка, причем организация этих систем в хлоропласте отличается от эукариотического типа. Следует заметить, что это справедливо и для других органелл клетки — митохондрий, но митохондрии существуют во всех эукариотических клетках, являясь их энергетическим депо, тогда как хлоропласты присутствуют только в клетках зеленых растений.

Поделитесь ссылкой:

Пластиды – это органоиды, входящие в структуру растительной клетки. Они хорошо видны под микроскопом, содержатся в растениях. Исключение составляют одноклеточные водоросли, бактерии и грибы.

В органеллах содержится генетический код, они способны воспроизводить себе подобных путем синтеза ДНК, РНК, белков. Роль и функции пластид в клетке определяется их строением. Они способны накапливать питательные вещества, выступать в роли депо. Отдельные виды пластид выполняют функцию фотосинтеза под воздействием энергии света.

Виды

В зависимости от погодных условий, фазы роста в клетках растений находится до трех типов пластид. Они представлены в таблице.

Название пластид Окраска В какой части растения Функции Что содержат
Лейкопласты бесцветные

прозрачные

подземная часть запасник питательных веществ Крахмал

Белки

Жиры

Сахара

ферменты

Хлоропласты зеленые стебель, листва, незрелый плод фотосинтез питательных веществ хлорофилл
Хромопласты оттенки:

желтого

оранжевого

красного

лепестки бутона

плоды

корнеплоды

листья в период листопада

привлечение

опылителей

распространителей семенного материала

Каротиноиды

антоциан

ксантофилл

белки

жиры

крахмал

сахара

ферменты

Среди этих видов пластид нет четких разделений. Они схожи по строению, способны к трансформации:

  • лейкопласты под воздействием света перерождаются в хлоропласты;
  • хлоропласты становятся хромопластами под воздействием погодных факторов (длины светового дня, температуры);
  • в лабораторных условиях хромопласты вновь зеленеют, становятся хлоропластами;
  • хлоропласты преобразуются в лейкопласты (листья отпускают корни в воде).

Строение пластид

Размер органоидов небольшой, от 3 до 10 микрон. Обычно они имеют круглую или овальную форму, выпуклые сверху, снизу.

Строение и функции пластид в разных фазах роста меняются.

Большинство имеют две мембраны:

  • внешняя (оболочная):
  • внутренняя (погруженная в стромы).

У некоторых высокоорганизованных растений в строении пластид до четырех мембранных перегородок. За счет мембран формируются:

  • тилакоиды – своеобразные отсеки различного строения;
  • граны – столбчатые или цепочные скопления тилакоидов;
  • ламелы – тилакоиды удлиненной формы.

Строма – вязкое содержимое, схожее в строении пластид.

Хлоропласты

Зеленые органоиды по строению встречаются различной формы, выделяют:

  • овальные;
  • спиралевидные;
  • лопастные;
  • эллипсоидные.

Важный компонент стромы – хлорофилл, необходимый для фотосинтеза.

В сложных пластидах элементы строения: белки, жиры, пигменты, ДНК, РНК.

Хромопласты

Двояковыпуклые, имеют различное строение:

  • трубчатое;
  • сферическое;
  • кубическую;
  • кристаллообразную.

Хромопласты в структуре содержат зерна крахмала. В них полностью разрушен зеленый пигмент, сохраняются другие питательные компоненты хлоропласта.

Лейкопласты

По строению и составу стромы подразделяются на:

  • амилопласты – запасники крахмала, при необходимости они трансформируются в моносахара;
  • элайопласты (липидопласты) они содержат жиры;
  • протеинопласты – кладовые белка.

По форме бывают в виде овала или эллипса.

Функции пластид

Первоначально формируются хлоропласты и лейкопласты. Роль этих пластид – фотосинтез, производство веществ, входящих в состав растительных клеток. Под воздействием света происходит четкое деление по виду органоидов и их функции.

В клетках высокоорганизованных видов растений содержится разное число органоидов. Их бывает 10, иногда количество достигает 200 единиц. В период похолоданий в листьях начинается синтез определенных пигментов. За счет этого строение органоида меняется.

Концентрация, состав красителя в плодах растений зависит от ДНК-кода. Цветные пигменты становятся видны после разрушения хлорофилла. Он боится низких температур. Растение готовится к зимнему периоду. Роль хромопластов – привлекающая и накопительная. Жиры, ферменты, белки, изначально содержащиеся в лейкопластах, накапливаются в процессе роста и спелости.

Значение хлоропластов

Эти органоиды отвечают функцию фотосинтеза, развитие клеток. Они ступенчато синтезируют глюкозу из двуокиси азота и воды. Реакция протекает с выделением кислорода. Процесс происходит за счет хлорофилла – по компонентному составу это углеводород. Высвобождая электрон под воздействием света, он меняет функцию, становится восстановителем.

Функции хромопластов

В процессе пучкования структура органоидов меняется. В хромопластах образуются пластоглобулы – скопления питательных веществ. Изменяются, разрушаются мембраны, клетка уплотняется. Внутреннее строение влияет на функции пласта: окраска становится более привлекательной, яркой за счет роста концентрации пигмента из-за разрушения мембранного строения органоида.

Роль лейкопластов

Функции подземной части растения зависят от разновидности лейкопласта. В зависимости от ДНК-кода, структура пластов изменяется. Функции клетки меняются, это зависит от компонентного состава – количества жиров, белков, сахаров, крахмала формирующего плода. По форме в основном круглые, реже овальные. Это обусловлено строением клетки эукариотического вида.

Пигменты пластид

В структуру клеточных органоидов входят три группы пигментов:

  • хролофилл – магний-порфириновые белковые комплексы хромопротеидов, придающие листьям, стволу зеленую окраску;
  • каротиноид – красящий пигмент, схожий с ретинолом (витамин А), в зависимости от концентрации обретают оранжевую или красноватую окраску;
  • ксантофилл по сути – окисленный каротин, содержится вместе с р-каротином, имеет такие же функции;
  • фикобилинпротеиды по компонентной структуре схожи с желчными пигметно-белковыми соединениями. К ним относятся: синие фикоцианины, придающие окраску плодам; красно-бордовые фикоэритрины.

Происхождение пластид

По одной гипотезе они возникли из цианобактерий. Позже возникла теория природного симбиогенеза бактерий, в состав которых входит хлорофилл, и пластидообразных микроорганизмов. Так объясняли появление митохондрий от эукариот.

Внимание ученые уделяли пигментному строению растительных клеток, позже ушли от этой версии. Появилась гипотеза возникновения пластид Archaeplastidae от зеленой водоросли и цианобактерии. Позже, благодаря симбиозу, зародились цветные простейшие водоросли. Они схожи по строению пластидами клеток:

  • содержится хлорофилл;
  • обнаружены пигментные включения;
  • мембранная структура.

Какого цвета могут быть пластиды?

Если рассматривать растение целиком, выделяется три цветовых гаммы:

  • желтые, оранжевые, красные пластиды расположены в цветках, плодах, корнеплодах, реже – листьях, стволе;
  • интенсивность окраски зависит от концентрации пигмента каратиноида;
  • зеленые органоиды – хлоропласты, они участвуют в процессе фотосинтеза; способны трансформироваться в хромопласты различной окраски или бесцветные лейкопласты.

Цвет пластид взаимосвязан с их функциональностью. Какого цвета будет органоид цветка, плода, корнеплода, зависит от модели ДНК. Информация воспроизводится в период роста растения.

Пигментация цветка привлекает внимание насекомых, участвующих в медосборе, происходит опыление. Яркий окрас плодов служит сигналом созревания семян, косточек для животных. Они распространяют семенной материал по обширной территории.

Двухмембранные органоиды со сложным строением — это хлоропласты. В их состав входит хлорофилл, который обеспечивает фотосинтез. За счет уникальной формы (двояковыпуклая линза) на листья поступает много света. Клетки покрыты внешней мембраной и содержат в себе тилокоиды, способствующие образованию гран и стромы. Количество первых компонентов достигает 60 единиц. Они объединяются между собой при помощи специальных тяжей.

image

Функциональные особенности

Строение хлоропласта изучается школьниками в 6 классе на уроках биологии. К особенностям клеток относится наличие в строме рибосомы, ДНК, РНК. В мембране присутствует вещество, способное придать растениям соответствующий цвет. Для хлорофилла характерен зеленый оттенок, а для каротиноида:

  • красный;
  • желтый;
  • оранжевый.

image

Значение хлорофилла для растений заключается в возможности осуществления процесса фотосинтеза. С учётом строения биологи выделяют 4 типа хлорофилла: a, b, c, d. Первые два содержатся в растениях на суше и зеленых водорослях. Типы a и c считаются растительными компонентами диатомовых, d и a — красных водорослей.

Для хлорофилла характерно поглощение солнечной энергии с последующей передачей иным молекулам. Разрушение зеленого вещества наблюдается в конце жизненного цикла органоида в результате резкого изменения светового дня и значения температуры. Часть хлоропластов превращается в хромопласты. Это приводит к изменению внутренней информации, появлению нового цветового оттенка, опадению листьев.

Принципы классификации

Пластиды делятся на три вида: лейкопласты (бесцветные), хлоропласты (окрашенные в зеленый цвет), хромопласты (имеют разные оттенки). На протяжении жизни клетки способны превращаться друг в друга. Лейкопластам свойственно переходить в хлоропласты, а последние за счёт появления бурых и прочих пигментов — в хромопласты, пластоглобулы.

Внешне зеленые вещества покрыты липидной и белковой мембранами. Полужидкая строма с тилакоидами (компартменты, ограниченные мембраной) считается основным веществом, в состав которого входят граны с каналами. Первые компоненты представлены в виде плоских круглых мешочков, расположенных перпендикулярно поверхности двухмембранных органоидов (ДО).

image

Уникальность их структуры заключается в хранении зеленого пигмента (хлорофилл). Главная функция хлоропластов связана с участием в фотосинтетическом явлении. В их состав входят жиры, зерна (митохондрия, пропластида), крахмал.

На долю липидов приходится до 30%. Они представлены тремя группами:

Структурная. В состав входят амфипатические вещества.Гидрофобная. В группу входят каротиноиды, которые защищают зеленые вещества от фотоокисления. Одновременно они транспортируют водород.Жирорастворимая. Группа состоит из витаминов К и Е.

К другим компонентам, входящим в состав хлоропласта, относятся углеводы. Они представлены в виде продуктов фотосинтеза. До 25% приходится на долю минералов. Ферменты могут выполнять двойную функцию: катализацию различных реакций, обеспечение биосинтеза белков.

Внутренняя структурированность хлоропластов зависит от функциональных нагрузок, физиологического состояния. Молодые клетки размножаются за счет деления, а зрелые обладают выраженной системой гран. Если они стареют, происходит разрыв тилакоидов, распадается хлорофилл. Осенью деградация приводит к появлению хромопластов.

Главная роль хлоропластов в фотосинтезе обеспечена их способностью пассивно двигаться в клетках, увлекаемых током цитоплазмы. Веществу свойственно собирать свет и активно перемещаться с одного места на другое. При интенсивном свете оно поворачивается ребром к яркому солнцу, выстраиваясь вдоль стенок, которые параллельны лучам.

image

Если освещение слабое, схема движения хлоропластов следующая: они перемещаются на стенки, обращённые к солнцу, поворачиваясь наибольшей поверхностью. Когда освещение среднее, клетки занимают соответствующее положение. От условий освещения зависит то, какие пигменты хлоропластов появятся.

Для пластид и митохондрий свойственна полуавтономная степень. Кроме фотосинтеза, в первых компонентах происходит биосинтез белка. Так как они содержат в себе ДНК, поэтому принимают активное участие в наследственном комплексе: передача признаков, цитоплазматические свойства.

Описание хромопластов

К пластидам высших растений относятся хромопласты. Они имеют незначительные размеры. Для внутриклеточных органелл характерен разный окрас: красный, желтый, коричневый. Он придает соответствующий цвет осенью, плодам и цветкам, что необходимо для привлечения опылителей и животных, разносящих семена продолжительные расстояния.

Структура ткани похожа на иные пластиды. Внутренняя оболочка развита слабее внешней. У некоторых представителей она может отсутствовать. В каротиноидах (жирорастворимые пигменты) происходит накапливание кристаллов. Для определения точных функций вещества изучается таблица с формами хромопластов:

  • многоугольная;
  • овальная;
  • серповидная;
  • игольчатая.

image

Их роль в жизни растений до конца не выяснена. Ученые предполагают, что пигменты участвуют в окислительных и восстановительных процессах, необходимых для размножения и физиологического развития клеток.

Строение лейкопластов

В органоидах этого типа накапливаются питательные компоненты. Лейкопласты имеют 2 оболочки: внутреннюю и внешнюю. На свету им свойственно превращаться в хлоропласты, но в привычном состоянии органоиды бесцветны. Основная их форма — шаровидная. Размещены они в мягких частях растений:

  • стебель;
  • корень;
  • луковица;
  • листья.

image

С учетом накапливаемого вещества лейкопласты классифицируются на следующие виды: амилопласты, элайопласты, протеинопласты. В первую группу входят органоиды с крахмалом, находящиеся в каждом растении. Если лейкопласт полностью заполнен крахмалом, он называется крахмальным зерном. Для элайопластов характерно продуцирование и запас жиров, а для протеинопластов — скопление белковых веществ.

Лейкопласты обладают ферментной субстанцией, что способствует ускоренному протеканию химических реакций. В отрицательном жизненном периоде, когда не происходит фотосинтез, они расщепляют полисахариды на простые углеводы. Так как в луковицах содержится много органоидов, поэтому им свойственно переносить длительную засуху, жару, низкую температуру. После выполнения своих функций они становятся хромопластами.

Симбиотическая теория

Чтобы выяснить механизм появления пластид, митохондрий и других органоидов, рассматривается теория эндосимбиоза. Ее суть заключается в совместной и взаимовыгодной жизни органеллы с клеткой. Впервые теорию предложил Шимпер в 1883 году. В 1867 ученые работали над двойственной природой лишайников.

Биолог Фамицын, учитывая теорию Шимпера, предположил, что хлоропласты, как лишайники и водоросли, относятся к симбионтам. Ученые доказали, что митохондрии — аэробные бактерии, которые не размножаются за пределами клеток. Общие свойства, характерные для митохондрий и пластид:

  • наличие двух замкнутых мембран;
  • размножение бинарным делением;
  • ДНК не связана с гистонами;
  • наличие своего аппарата синтеза белка.

image

В ДНК пластид и митохондрий, в отличие от аналогичных структур прокариот, нет интронов. А в ДНК хлоропластов закодирована информация о некоторых белках, остальные данные находятся в ядре клетки. В результате эволюции часть генетического материала из генома перешло в ядро, поэтому хлоропласты и митохондрии не размножаются независимо.

Археи и бактерии не склонны к фагоцитозу. Они питаются только осмотрофно. Множественные биологические и химические исследования указывают на химерную сущность бактерий. Ученые не выяснили, как сливаются организмы из нескольких доменов. В условиях современности выявлены организмы, которые содержат в себе другие клетки в качестве эндосимбионтов. Они отличаются от первичных эукариотов тем, что не интегрируются в одно целое, не имеют своей индивидуальности.

Интересным организмом считается Mixotricha paradoxa. Чтобы двигаться, она использует 250 000 бактерий, которые фиксируются на ее поверхности. Митохондрии у этого организма вторично потеряны. Внутри находятся сферические аэробные микроорганизмы, которые заменяют органеллы.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий