главная > справочник > химическая энциклопедия: Нуклид

Нуклид, совокупность атомов с определенными значениями заряда ядра Z (числом протонов в ядрах) и массового числаА (суммой чисел протоновZ и нейтроновN в ядрах). Для обозначения нуклида используют назв. элемента, к которому через дефис присоединяют значение А (напр., кислород-16, иод-131, уран-235), или символ хим. элемента, рядом с которым вверху слева указывают А (16О, 131I, 235U). Масса атома нуклида, выраженная в атомных единицах массы(а. е. м.), округленно равна А (только у одного нуклида 12С значение массы атома в а. е. м. целочисленно и в точности равно 12). Точные значения масс атомов отдельных нуклид определяют экспериментально методом масс-спектрометрии. В принципе масса атома каждого нуклида равна сумме масс протонов и нейтронов, входящих в состав ядер, минус масса, отвечающая энергии связи протонов и нейтронов в ядре (т. наз. д е ф е к т м а с с ы), плюс масса электронов, образующих электронную оболочку атома, минус масса, отвечающая энергии связи электронов с ядром. Для нуклидов легких элементов массы атомов обычно несколько меньше массовых чисел (напр., масса 16О 15,99491464 а. е. м.), для нуклидов тяжелых элементов массы атомов м. б. несколько больше массовых чисел (напр., масса 232Th 232,038053805 а.е.м.).

Нуклиды подразделяют на стабильные и радиоактивные (радионуклиды). У каждого элемента с четным Z (до Z = 82) существует 2 или более стабильных нуклид, встречающихся в природе, у элементов с нечетными Z м. б. 1 или самое большее 2 стабильных нуклида; у «нечетных» элементов Тс (Z = 43), Pm (Z = 61) и у всех «нечетных» элементов с Z >= 85 стабильных нуклидов нет, все нуклиды радиоактивны. Всего стабильных нуклидов ок. 270; из всех радионуклидов ок. 50 встречаются в природе, остальные радионуклиды (ок. 1700) получены искусственно. В настоящее время радионуклиды известны практически у всех элементов. Многие стабильные и радиоактивные нуклиды используются как изотопные индикаторы (меченые атомы). В СССР промышленно производится ок. 140 радионуклидов и большое число препаратов, обогащенных определенными стабильными нуклид

Нуклиды одного элемента наз. изотопами; нуклид разл. элементов с одинаковыми значениями А -и з о б а р а м и. Возможно существование двух и даже трех стабильных изобаров (напр., 96Zr, 96Mo и 96Ru). Из-за различий в энергиях связи протонов и нейтронов в ядрах точные значения масс отдельных изобаров различаются между собой. нуклид разл. элементов с одинаковым значением N наз. и з о т о н а м и (напр., 95Мо, 96Тс, 97Ru).

Для ядер стабильных нуклидов с Z приблизительно до 20-25 число протонов примерно равно числу нейтронов, по мере дальнейшего увеличения Z для стабильных нуклид отношение числа нейтронов в ядре к числу протонов постепенно увеличивается до 1,5. Ядра нуклидов, содержащие большее число нейтронов, чем это соответствует стабильным ядрам данного элемента, при радиоактивном распаде обычно испускают b-частицы, причем Z увеличивается на 1; ядра нуклидов, обедненные нейтронами, м. б. как b+-радиоактивными, так и претерпевать электронный захват, при этом Z уменьшается на 1 (см. Радиоактивность).

Распространенность нуклидов в земной коре зависит от многих факторов, определяющих устойчивость ядер (энергии связи протонов и нейтронов в них), и от первонач. условий, при которых образовывались эти нуклиды. Наиб. распространен в земной коре 16О, ядра которого содержат по 8 протонов и нейтронов и являются «дважды магическими». В прир. смеси изотопов кислорода на 16О приходится 99,762 ат. %. Наим. распространенным из стабильных нуклидов является 3Не (в прир. смеси изотопов гелия на долю 3Не приходится 0,000138 ат. %). В космосе наиб. распространен 1Н. Некоторые нуклиды постоянно образуются в результате ядерных реакций и постепенно накапливаются в земной коре (гелий-3, изотопы свинца и др.). Содержание в земной коре прир. долгоживущих радионуклидов (40К, 87Rb, 235U и др.) постепенно уменьшается вследствие радиоактивного распада. Существуют и такие прир. радионуклиды, убыль которых за счет радиоактивного распада постоянно компенсируется их образованием в результате радиоактивного распада др. радионуклидов, и поэтому их содержание в земной коре практически не меняется. Так, общее содержание At в земной коре (из прир. радионуклидов At наиб. устойчив a-радиоактивный 210At, период полураспада которого Т1/2 8,1 ч), несмотря на его быстрый распад, остается практически постоянным и равным 70 мг (в толще земной коры на глубине до 1,6 км), так как At постоянно образуется как член радиоактивных рядов урана-238 и урана-235 (см. Радиоактивные ряды).

В© С. С. Бердоносов.

Перейти к навигацииПерейти к поиску

Нукли́д (лат. nucleus — «ядро» и др.-греч.είδος — «вид, сорт») — вид атомов, характеризующийся определённым массовым числом, атомным номером и энергетическим состоянием ядер и имеющий время жизни, достаточное для наблюдения[1].

Общее описание

Из определения следует, что нуклид — это каждый отдельный вид атомов какого-либо химического элемента с ядром, состоящим из строго определённого числа протонов (Z) и нейтронов (N), причём ядро находится в определённом энергетическом состоянии (основном состоянии или одном из изомерных состояний).

Число протонов Z представляет собой атомный номер элемента, а сумма A = Z + N— массовое число. Нуклиды, имеющие одинаковый атомный номер (то есть обладающие одинаковым числом протонов), называются изотопами, одинаковое массовое число — изобарами, одинаковое число нейтронов — изотонами. Атомы изотопов являются атомами одного и того же химического элемента (например, изотопы кислорода кислород-16, кислород-17 и кислород-18 имеют одинаковое число протонов, Z = 8, но разное число нейтронов, N = 8, 9 и 10). При этом одинаковые изотопы одного и того же элемента могут представлять собой разные нуклиды — изомеры; именно поэтому предпочтительно употребление термина «нуклид» (а не «изотоп») при описании явлений, связанных с радиоактивностью. Атомы изобаров относятся к разным химическим элементам, например азот-16, кислород-16 и фтор-16; в каждой изобарической цепочке (то есть в полном наборе изобаров, имеющих данное массовое число) все химические элементы различны, если не учитывать изомерных состояний нуклидов. Так, в изобарической цепочке с A = 6 известны 4 нуклида: водород-6 с N = 5 и Z = 1, гелий-6 (4, 2), литий-6 (3, 3) и бериллий-6 (2, 4); теоретически может существовать также бор-6 (1, 5), но экспериментально он не наблюдался.

Относительная атомная масса нуклида округлённо равна его массовому числу, только для углерода-12 она по определению точно равна 12. Например, относительная атомная масса кальция-40 равна 39,96259098. Разность относительной атомной массы и массового числа называется избытком массы.

Для обозначения нуклида элемента (E) используют запись вида: АZE N, причём индексы Z и N могут опускаться. Распространённым является обозначение «элемент-A» (например, углерод-12, уран-238, U-235). Для нуклидов, представляющих собой метастабильные возбуждённые состояния одного изотопа (изомеры), используют латинскую букву m в верхнем правом или верхнем левом индексе, например 180Tam или 180mTa. Если существует более одного возбуждённого изомерного состояния с данными A и Z, то для них (в порядке возрастания энергии) используют индексы m1, m2 и т. д. либо последовательность букв m, n, p, q,… Некоторые нуклиды имеют традиционные собственные названия, такие как дейтерий, актинони т. п. (см. список таких названий).

Классификация

Нуклиды делятся на стабильные и радиоактивные (радионуклиды, радиоактивные изотопы). Стабильные нуклиды не испытывают спонтанных радиоактивных превращений из основного состояния ядра. Радионуклиды путём радиоактивных превращений переходят в другие нуклиды. В зависимости от типа распада, образуются либо другой нуклид того же самого элемента (при нейтронном или двухнейтронном распаде), либо нуклид другого элемента с тем же массовым числом (распады, изменяющие заряд ядра без вылета нуклонов, то есть бета-распад, электронный захват, позитронный распад, все виды двойного бета-распада), либо два или несколько новых нуклидов (альфа-распад, протонный распад, кластерный распад, спонтанное деление).

Среди радионуклидов выделяются короткоживущие и долгоживущие. Радионуклиды, существующие на Земле с момента её формирования, часто называют природными долгоживущими, или примордиальными радионуклидами; такие нуклиды имеют период полураспада, превышающий 5⋅108 лет. Для каждого элемента были искусственно получены радионуклиды; для элементов с атомным номером (то есть числом протонов), близким к одному из «магических чисел», количество известных нуклидов может доходить до нескольких десятков. Наибольшим количеством известных нуклидов — 47 — обладает ртуть (в диапазоне массовых чисел 170—216, без учёта изомерных состояний)[2][3][4]. Некоторые элементы имеют лишь один стабильный нуклид (так называемые моноизотопные элементы, например, золото и кобальт), а максимальным числом стабильных нуклидов — 10 — обладает олово. У многих элементов все нуклиды радиоактивны (все элементы, имеющие атомный номер больше, чем у свинца, а также технеций и прометий). Каждому массовому числу соответствует от 0 до 2 стабильных нуклидов, числу нейтронов — от 0 до 6. Общее число всех известных нуклидов превышает 3300[5] (без учёта изомеров; на сегодня известно около 1000 нуклидов в основных состояниях, для которых существуют одно или несколько метастабильных возбуждённых состояний с периодом полураспада, превышающим 0,1 мкс).

Для многих нуклидов (в том числе для наблюдательно стабильных) законами сохранения разрешён тот или иной вид радиоактивности, в действительности не наблюдающийся на существующем уровне чувствительности экспериментальных установок из-за чрезвычайно большого периода полураспада. В частности, для любого данного массового числа A возможен только один бета-стабильный нуклид, соответствующий глобальному минимуму энергии в данной изобарной цепочке. Для всех остальных нуклидов с данным A кинематически разрешён обычный или двойной бета-распад (включая β, β+ или электронный захват), хотя предсказываемые периоды полураспада могут быть крайне велики — например, 1030 лет и выше. Большинство нуклидов с массовым числом больше 140 могут испытывать альфа-распад, но по той же причине — крайне большое время жизни — для многих из них этот канал распада не наблюдался. С увеличением чувствительности экспериментов некоторые нуклиды переходят из разряда стабильных в (слабо)радиоактивные (например, была обнаружена слабая альфа-радиоактивность с периодами полураспада >1018 лет у ранее считавшихся стабильными висмута-209, вольфрама-180 и европия-151).

История и этимология

Термин «нуклид» (а также «радионуклид») был предложен[6] Трумэном Команом (Truman P. Kohman) в 1947 году. Автор термина обсудил его со специалистами по классической филологии (профессорами Гертрудой Смит и Бенедиктом Эйнарсоном), чтобы наиболее точно передать смысл, выражаемый этим словом, то есть сорт ядер (от латинского корня nucle- — «ядро» и др.-греч.είδος — «вид, сорт», с отбрасыванием лишних гласных на стыке для благозвучия). Определение Комана, данное в его статье[6], посвящённой новому термину: «Нуклид. Сорт атома, характеризующийся строением его ядра, в частности числом протонов и нейтронов в его ядре».

Примечания

  1. Официальное рекомендуемое определение термина по IUPAC Compendium of Chemical Terminology, 2nd Edition, 1997 (Краткий справочник терминов ИЮПАК, 2-е издание): A species of atom, characterized by its mass number, atomic number and nuclear energy state, provided that the mean life in that state is long enough to be observable.
  2. Audi G., Kondev F. G., Wang M., Huang W. J., Naimi S.The Nubase2016 evaluation of nuclear properties (англ.) // Chinese Physics C. — 2017. — Vol. 41, iss. 3. — P. 030001-1—030001-138. — doi:10.1088/1674-1137/41/3/030001. — .
  3. Current Status and Future Potential of Nuclide Discoveries (англ.) (pdf). National Superconducting Cyclotron Laboratory and Department of Physics & Astronomy, Michigan State University, East Lansing, MI 48824, USA (11 April 2013). Дата обращения: 15 октября 2013.
  4. Hilton, J. α-spectroscopy studies of the new nuclides 165Pt and 170Hg (англ.) // Physical Review C : journal. — 2019. — Vol. 100, no. 1. — P. 014305. — doi:10.1103/PhysRevC.100.014305.
  5. Michael Thoennessen.Discovery of Nuclides Project (англ.). Дата обращения: 9 апреля 2019.
  6. 12Truman P. Kohman. Proposed New Word: Nuclide (англ.) // American Journal of Physics : journal. — 1947. — Vol. 15, no. 4. — P. 356—357. — doi:10.1119/1.1990965. — .

См. также

image Из Википедии, бесплатной энциклопедии

Нукли́д (лат. nucleus — «ядро» и др.-греч.είδος — «вид, сорт») — вид атомов, характеризующийся определённым массовым числом, атомным номером и энергетическим состоянием ядер и имеющий время жизни, достаточное для наблюдения[1].

Общее описание[править | править код]

Из определения следует, что нуклид — это каждый отдельный вид атомов какого-либо химического элемента с ядром, состоящим из строго определённого числа протонов (Z) и нейтронов (N), причём ядро находится в определённом энергетическом состоянии (основном состоянии или одном из изомерных состояний).

Число протонов Z представляет собой атомный номер элемента, а сумма A = Z + N— массовое число. Нуклиды, имеющие одинаковый атомный номер (то есть обладающие одинаковым числом протонов), называются изотопами, одинаковое массовое число — изобарами, одинаковое число нейтронов — изотонами. Атомы изотопов являются атомами одного и того же химического элемента (например, изотопы кислорода кислород-16, кислород-17 и кислород-18 имеют одинаковое число протонов, Z = 8, но разное число нейтронов, N = 8, 9 и 10). При этом одинаковые изотопы одного и того же элемента могут представлять собой разные нуклиды — изомеры; именно поэтому предпочтительно употребление термина «нуклид» (а не «изотоп») при описании явлений, связанных с радиоактивностью. Атомы изобаров относятся к разным химическим элементам, например азот-16, кислород-16 и фтор-16; в каждой изобарической цепочке (то есть в полном наборе изобаров, имеющих данное массовое число) все химические элементы различны, если не учитывать изомерных состояний нуклидов. Так, в изобарической цепочке с A = 6 известны 4 нуклида: водород-6 с N = 5 и Z = 1, гелий-6 (4, 2), литий-6 (3, 3) и бериллий-6 (2, 4); теоретически может существовать также бор-6 (1, 5), но экспериментально он не наблюдался.

Относительная атомная масса нуклида округлённо равна его массовому числу, только для углерода-12 она по определению точно равна 12. Например, относительная атомная масса кальция-40 равна 39,96259098. Разность относительной атомной массы и массового числа называется избытком массы.

Для обозначения нуклида элемента (E) используют запись вида: АZE N, причём индексы Z и N могут опускаться. Распространённым является обозначение «элемент-A» (например, углерод-12, уран-238, U-235). Для нуклидов, представляющих собой метастабильные возбуждённые состояния одного изотопа (изомеры), используют латинскую букву m в верхнем правом или верхнем левом индексе, например 180Tam или 180mTa. Если существует более одного возбуждённого изомерного состояния с данными A и Z, то для них (в порядке возрастания энергии) используют индексы m1, m2 и т. д. либо последовательность букв m, n, p, q,… Некоторые нуклиды имеют традиционные собственные названия, такие как дейтерий, актинони т. п. (см. список таких названий).

Классификация[править | править код]

Нуклиды делятся на стабильные и радиоактивные (радионуклиды, радиоактивные изотопы). Стабильные нуклиды не испытывают спонтанных радиоактивных превращений из основного состояния ядра. Радионуклиды путём радиоактивных превращений переходят в другие нуклиды. В зависимости от типа распада, образуются либо другой нуклид того же самого элемента (при нейтронном или двухнейтронном распаде), либо нуклид другого элемента с тем же массовым числом (распады, изменяющие заряд ядра без вылета нуклонов, то есть бета-распад, электронный захват, позитронный распад, все виды двойного бета-распада), либо два или несколько новых нуклидов (альфа-распад, протонный распад, кластерный распад, спонтанное деление).

Среди радионуклидов выделяются короткоживущие и долгоживущие. Радионуклиды, существующие на Земле с момента её формирования, часто называют природными долгоживущими, или примордиальными радионуклидами; такие нуклиды имеют период полураспада, превышающий 5⋅108 лет. Для каждого элемента были искусственно получены радионуклиды; для элементов с атомным номером (то есть числом протонов), близким к одному из «магических чисел», количество известных нуклидов может доходить до нескольких десятков. Наибольшим количеством известных нуклидов — 47 — обладает ртуть (в диапазоне массовых чисел 170—216, без учёта изомерных состояний)[2][3][4]. Некоторые элементы имеют лишь один стабильный нуклид (так называемые моноизотопные элементы, например, золото и кобальт), а максимальным числом стабильных нуклидов — 10 — обладает олово. У многих элементов все нуклиды радиоактивны (все элементы, имеющие атомный номер больше, чем у свинца, а также технеций и прометий). Каждому массовому числу соответствует от 0 до 2 стабильных нуклидов, числу нейтронов — от 0 до 6. Общее число всех известных нуклидов превышает 3300[5] (без учёта изомеров; на сегодня известно около 1000 нуклидов в основных состояниях, для которых существуют одно или несколько метастабильных возбуждённых состояний с периодом полураспада, превышающим 0,1 мкс).

Для многих нуклидов (в том числе для наблюдательно стабильных) законами сохранения разрешён тот или иной вид радиоактивности, в действительности не наблюдающийся на существующем уровне чувствительности экспериментальных установок из-за чрезвычайно большого периода полураспада. В частности, для любого данного массового числа A возможен только один бета-стабильный нуклид, соответствующий глобальному минимуму энергии в данной изобарной цепочке. Для всех остальных нуклидов с данным A кинематически разрешён обычный или двойной бета-распад (включая β, β+ или электронный захват), хотя предсказываемые периоды полураспада могут быть крайне велики — например, 1030 лет и выше. Большинство нуклидов с массовым числом больше 140 могут испытывать альфа-распад, но по той же причине — крайне большое время жизни — для многих из них этот канал распада не наблюдался. С увеличением чувствительности экспериментов некоторые нуклиды переходят из разряда стабильных в (слабо)радиоактивные (например, была обнаружена слабая альфа-радиоактивность с периодами полураспада >1018 лет у ранее считавшихся стабильными висмута-209, вольфрама-180 и европия-151).

История и этимология[править | править код]

Термин «нуклид» (а также «радионуклид») был предложен[6] Трумэном Команом (Truman P. Kohman) в 1947 году. Автор термина обсудил его со специалистами по классической филологии (профессорами Гертрудой Смит и Бенедиктом Эйнарсоном), чтобы наиболее точно передать смысл, выражаемый этим словом, то есть сорт ядер (от латинского корня nucle- — «ядро» и др.-греч.είδος — «вид, сорт», с отбрасыванием лишних гласных на стыке для благозвучия). Определение Комана, данное в его статье[6], посвящённой новому термину: «Нуклид. Сорт атома, характеризующийся строением его ядра, в частности числом протонов и нейтронов в его ядре».

Примечания[править | править код]

  1. Официальное рекомендуемое определение термина по IUPAC Compendium of Chemical Terminology, 2nd Edition, 1997 (Краткий справочник терминов ИЮПАК, 2-е издание): A species of atom, characterized by its mass number, atomic number and nuclear energy state, provided that the mean life in that state is long enough to be observable.
  2. Audi G., Kondev F. G., Wang M., Huang W. J., Naimi S.The Nubase2016 evaluation of nuclear properties (англ.) // Chinese Physics C. — 2017. — Vol. 41, iss. 3. — P. 030001-1—030001-138. — doi:10.1088/1674-1137/41/3/030001. — .
  3. Current Status and Future Potential of Nuclide Discoveries (англ.) (pdf). National Superconducting Cyclotron Laboratory and Department of Physics & Astronomy, Michigan State University, East Lansing, MI 48824, USA (11 April 2013). Дата обращения: 15 октября 2013.
  4. Hilton, J. α-spectroscopy studies of the new nuclides 165Pt and 170Hg (англ.) // Physical Review C : journal. — 2019. — Vol. 100, no. 1. — P. 014305. — doi:10.1103/PhysRevC.100.014305.
  5. Michael Thoennessen.Discovery of Nuclides Project (англ.). Дата обращения: 9 апреля 2019.
  6. 12Truman P. Kohman. Proposed New Word: Nuclide (англ.) // American Journal of Physics : journal. — 1947. — Vol. 15, no. 4. — P. 356—357. — doi:10.1119/1.1990965. — .

См. также[править | править код]

This page is based on a Wikipedia article written by contributors (read/edit).Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses. —>

нуклид в словаре кроссвордиста

нуклид

Энциклопедический словарь, 1998 г.

нуклид

общее название атомных ядер (и атомов), характеризующихся числом протонов в ядре Z, числом нейтронов N и общим числом нуклонов A = Z + N, которое называется массовым числом. Обозначается химическим символом Н с индексами. Радиоактивные ядра и атомы называются радионуклидами.

Википедия

Нуклид

Нукли́д  — вид атомов, характеризующийся определённым массовым числом , атомным номером и энергетическим состоянием ядер и имеющий время жизни , достаточное для наблюдения.Т. е. другими словами, это общее название для атомов, простых ионов и атомных ядер.

Примеры употребления слова нуклид в литературе.

Они сбросят соответствующие детергенты, а также короткоживущие нуклиды, таконитовую пыль, ядовитые микроорганизмы, биоразлагаемые пестициды.

Чистое золото придется в конце концов выделять из смеси различных нуклидов и непрореагировавших изотопов.

Оба нуклида самопроизвольно с захватом электрона превращаются соответственно в ртуть-197 и таллий-197.

Этому нас учит так называемая карта нуклидов, в которой представлены все известные изотопы и возможные направления их распада.

Однако среди известных нуклидов нельзя обнаружить альфа-излучателей такого рода.

Напротив, батареи из радиоактивных нуклидов имеют совершенно иные резервы мощности.

Недопустимое превышение нормы нуклидов, пестицидов и этилового спирта.

На двери виднелись таблички, предупреждающие о разных опасностях — о радиоактивных нуклидах, микроволнах, биологической опасности, взрывчатых веществах, лазерном излучении.

Источник: библиотека Максима Мошкова

image

О радиации широко заговорили лишь после аварии на Чернобыльской АЭС, до этого же времени вред радиации хоть и учитывался, но только лишь врачами. Однако, с момента катастрофы на ЧАЭС прошло уже немало времени, и люди, по большей части, стали забывать о радиации и она осталась лишь, по большей части, эдакой «страшилкой». Но излучение окружает нас повсюду, и в некоторых случаях его уровень оказывается даже высоким, что вызывает значительные проблемы со здоровьем. Причем радиация не в виде чистого излучения, а в виде радионуклидов — химических веществ, которые мы потребляем с водой, воздухом, пищей.

 Вред радиации: радионуклиды имеют свойство накапливаться в организме

Радионуклиды представляют собой химический элемент, который способен к радиоактивным превращениям, то есть имеет свойство переходить в нуклид другого элемента, или же в нуклид того же элемента. При этом происходит распад нуклида, соответственно с определенным вредом для здоровья.

То есть, основное негативное свойство радионуклидов — радиация, излучаемая при их распаде. Вещества, находящиеся в окружающей природной среде, практически неопасны для организмов, и они являются одними из источников естественного радиационного фона. Там, где радионуклидов скапливается достаточно много, фон повышается. То есть не происходит ничего, что выходило бы за рамки, заложенные природой, ведь радиоактивное излучение было «учтено» при зарождении и развитии жизни на Земле. Живые организмы в ходе долгой эволюции подстраивались под него, и потому в естественном виде вред радиация нанести не может.

Но вмешательство человека существенно исказило природу, и в итоге опасные элементы стали попадать в наши тела — с воздухом, с пищей, с водой. Курильщики и люди, что их окружают, с каждой затяжкой потребляют изотопы цезия и стронция; любители грибов рискуют «скушать» половину годовой нормы, просто собрав (или купив) грибов не в том месте. И это, к сожалению, негативно отразится на их здоровье — тем и коварно радиоактивное излучение, что его не видно, и узнается о нем постфактум.

Но самое страшное, действительно страшное — это то, что радионуклиды имеют неприятное свойство накапливаться внутри организма, и тело подвергается облучению даже в изолированной от любых воздействий камере, что уж говорить о нормах радиации, которые получаются в естественной среде? Вред от радиации наступит, в таком случае, точно и гарантированно. Пусть не в виде лучевой болезни, но последствия вряд ли будут приятными.

Рассмотрим, для примера, стронций-90. Вещество накапливается в скелете, причем с первых дней появления костной ткани, то есть ещё даже до рождения. И чем большую дозу стронция получит человеческий организм в материнской утробе, тем больший вред будет нанесен еще несозревшему телу.

Стронций облучает постоянно, и «атаке» подвергается:

  • скелет;
  • костный мозг;
  • кровь;
  • кроветворная система.

Под большой угрозой оказывается иммунная и репродуктивная система. И это притом, что внешне вроде как всё в порядке, ведь ни излучение, ни сам стронций-90 выявить в лабораторных условиях у живого человека невозможно. Вред радиации, образуемой изотопом стронция-90, проявляется в анемии, хронической усталости (в том числе и в виде синдрома хронической усталости), аутоиммунных процессах.

Если рассматривать цезий в виде изотопа (цезий-137), то он, подобно стронцию, умеет «прятаться» в тканях человеческого тела, то есть его наличие и объем неопределим до самой смерти! Вызывает же цезий-137 достаточно «милый» список болезней и патологий, к которым, в первую очередь, относится:

  • мигрень. Самое безобидное, но наиболее частое явление;
  • вегетососудистая дистония по гипер или гипотипу. Мало приятного, да и риск инфаркта или инсульта возрастает в десятки и сотни раз;
  • аритмия и/или тахикардия. Предвестники инфаркта, между прочим;
  • цирроз печени. Да-да, можно прожить трезвенником всю жизнь, но при этом умереть от цирроза печени. Цезий-137 будет стараться, гарантированно;
  • проблемы с ЖКТ и системой пищеварения в целом.

Однако, несмотря на столь внушительный список, вред радиации в случае с цезием не столь уж «плачевен». Если его поток в организм прекратится, то тело выведет опасный радионуклид в течение всего лишь 200 дней. Стронций, к примеру, не выводится никак и ни за какие сроки.

И это всего лишь два опасных элемента. А ведь их — великое множество! И все это «дело» мы потребляем с пищей, с водой, с воздухом. Но мало этого, мы сами себя специально травим изотопами, закуривая сигареты, или позволяя другим курить в своём присутствие. Мы не требуем никаких сертификатов, приобретая строительные и отделочные материалы. А потом начинаются болезни, поиски их источника… тогда как он всегда с нами. Тем и коварна радиация, что вред от нее можно оценить лишь по факту облучения.

Не стоит думать, что радионуклиды можно выявить при помощи обычного дозиметра. «Счетчик Гейгера» реагирует лишь на излучение, в то время, как объем излучения указанных элементов невысок, и чувствительности у прибора не хватит. Радионуклиды можно выявить в лабораторных условиях, причем для этого придется использовать сложное оборудование.

 Снижение потребления радионуклидов, или пара слов о профилактике

Для того, чтобы не потреблять этих донельзя активных элементов, важно помнить, что их концентрация предельно низка в одном случае, и высока в другом. А значит, вред от радиации окажется существенно меньше в случае, если радионуклидов будет вокруг гораздо меньше. Поэтому стоит запомнить, что из продуктов питания наиболее высокие показатели по содержанию опасных включений будут в:

  • речная рыба, особенно хищники и придонные виды рыб (сом, к примеру);
  • раки, пойманные в естественной среде;
  • грибы, особенно те, что растут вдоль дорог и автомагистралей;
  • молоко, из-под коровы, необработанное;
  • яйца куриные;
  • мясо.

Но стоит сделать важную оговорку. Продукты, перечисленные выше, лишь условно относятся к тем, которые накапливают более всего радионуклидов. Однако, если грибы произрастают в чистом лесу, если водоем, в котором выловлена рыба или пойман рак, не используется для сброса промышленных или любых других отходов, если коровы пасутся на чистом пастбище, а зимой поедают качественные корма, если куры не попадают в зараженные районы, а бегают вокруг дома, который расположен в удалении от оживленной улицы, то такие продукты содержат минимальную концентрацию активных включений, которая не представляет ровным счетом никакой опасности для здоровья.

Радионуклиды можно «получить» и вместе с водой, если пить ее из источника, происхождение которого неизвестно. Вред радиации, однако, можно минимизировать, если воду вскипятить — часть элементов испарится вместе с паром. И, конечно же, воду перед и после кипячения следует пропустить через самый примитивный фильтр.

Нельзя забывать и о жилищах — в них также может быть большое количество излучающих предметов. Они могут попасть в жилище извне, а могут быть в составе отделочных или строительных материалов.

И последнее. Не стоит бояться радионуклидов — они являются частью нашего мира. Следует опасаться лишь их чрезмерного количества в доме, в рационе, в воздухе. Вы можете обратиться в специализированную лабораторию, что бы проверить свой дом, воду, которую вы пьёте и продукты, что произрастают на грядках, на предмет наличия радионуклидов. Продукты питания, которые вы приобретаете, должны иметь сертификат качества, но если сомнения есть — также несите их в лабораторию. Уж лучше один раз потратить немного денег на исследования, чем потом на себе или, тем более, на своих детях ощутить вред радиации.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий