Формула ускорения времени

image тела при его движении за единицу времени:

image

Среднее ускорение — векторная физическая величина, равная отношению изменения скорости к промежутку времени, за которое произошло это изменение.

Мгновенное ускорение — предел, к которому стремится вектор среднего ускорения при .

Равнопеременное движение — движение с постоянным ускорением.

При равноускоренном движении по прямой скорость тела определяется формулой:

Зная, что , найдём формулу для определения координаты x:

Координата тела равна начальной координате плюс перемещение. Перемещение равно средней скорости на время. Средняя скорость равна сумме начальной и конечной скоростей делить на 2. Конечная скорость равна начальной плюя ускорение на время. подставляем формулы для скоростей в перемещение и получаем исходную формулу.

В случае одномерного равноускоренного движения вдоль координаты x имеет место формула:

Чтобы получить эту формулу, нужно рассмотреть уравнение зависимости скорости от начальной скорости и ускорения, возвести в квадрат обе части равенства, выделить из правой части перемещение.

,

В векторном виде не пишем дробно-рациональное выражение, только обычное.

Графики там всякие.



Содержание:

Что такое равноускоренное движение? Примеры равноускоренного движения Формула равноускоренного движения Рекомендуемая литература по теме Равноускоренное движение, видео

Что такое равноускоренное движение?

Равноускоренным движением в физике считается такое движение, вектор ускорения которого не меняется по модулю и направлению. Говоря простым языком, равноускоренное движение представляет собой неравномерное движение (то есть идущее с разной скоростью), ускорение которого является постоянным на протяжении определенного промежутка времени. Представим себе автомобиль, который начинает двигаться, первые 2 секунды его скорость равна 10 м/с, следующие 2 секунды он уже движется со скоростью 20 м/с, а еще через 2 секунды уже со скоростью 30 м/с. То есть каждые 2 секунды он ускоряется на 10 м/с, такое движение и есть равноускоренным.

Отсюда можно вывести предельно простое определение равноускоренного движения: это такое движение любого физического тела, при котором его скорость за равные промежутки времени изменяется одинаково.

Примеры равноускоренного движения

Наглядным примером равноускоренного движения в повседневной жизни может быть велосипед, едущий с горки вниз (но не велосипед, управляемый велосипедистом), или брошенный камень под определенным углом к горизонту.

К слову пример с камнем можно рассмотреть более детально. В любой точке траектории полета на камень действует ускорение свободного падения g. Ускорение g не меняется, то есть остается константой и всегда направлено в одну сторону (по сути, это главное условие равноускоренного движения).

Полет брошенного камня удобно представить в виде сумы движений относительно вертикальной и горизонтальной оси системы координат.

Если вдоль оси Х движение камня будет равномерным и прямолинейным, то вдоль оси Y равноускоренным и прямолинейным.

Формула равноускоренного движения

Формула скорости при равноускоренном движении будет иметь такой вид:

При равноускоренном движении зависимость V(t) будет иметь вид прямой линии.

Ускорение может быть определено по углу наклона графика скорости. На этом рисунке оно равно отношению сторон треугольника АВС.

Чем больше угол β, тем больше наклон и как следствие, крутизна графика по отношению к оси времени, и тем больше будет ускорение тела.

Рекомендуемая литература по теме

  • Сивухин Д. В. Общий курс физики. — М.: Физматлит, 2005. — Т. I. Механика. — С. 37. — 560 с. — ISBN 5-9221-0225-7.
  • Тарг С. М. Краткий курс теоретической механики. — 11-е изд. — М.: «Высшая школа», 1995. — С. 214. — 416 с. — ISBN 5-06-003117-9.

Равноускоренное движение, видео

При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

Страница про автора —>

Второй закон Ньютона, масса и вес тела

Обобщая результаты опытов Галилея по падению тяжелых тел, астрономические законы Кеплера о движении планет, данные собственных исследований, Ньютон сформулировал второй закон динамики, количественно связывающий изменение движения тела с силами, вызывающими это изменение.

Чтобы исследовать зависимость между силой и ускорением количественно, рассмотрим некоторые опыты.

Ускорение от величины силы

I. Рассмотрим, как зависит ускорение одного и того же тела от величины силы, действующей на это тело. Предположим, что к тележке прикреплен динамометр, по показаниям которого измеряют силу. Измерив длину пройденного тележкой пути за какой-нибудь промежуток времени t, по формуле s = (at2) : 2 определим ускорение a.

Изменяя величину силы, проделаем опыт несколько раз. Результаты измерения покажут, что ускорение прямо пропорционально силе, действующей на тележку

a1 : a2 = F1 : F2

ИЛИ

а ~ F.

Отношение силы, действующей на тело, к ускорению есть величина постоянная, которую обозначим mЭто отношение назовем массой тела.

Зависимость ускорения от массы

II. Установим зависимость ускорения тела от его массы. Для этого будем действовать на тележку какой-нибудь постоянной силой, изменяя массу (помещая различные грузы на тележку). Ускорения тележки будем определять так же, как и в первом опыте. Опыт покажет, что ускорение тележки обратно пропорционально массе, то есть

(a1/a2) = (m2/m1), или а ~ (1/m)

Обобщая результаты опытов, можно заметить, что ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе данного тела. Этот вывод называется вторым законом Ньютона. Математически этот закон можно записать так:

а = F /m

где а — ускорение, m—масса тела, F — результирующая всех сил, приложенных к телу. В частном случае на тело может действовать и одна сила. Результирующая сила равна векторной сумме всех сил, приложенных к телу;

= mа.

Следовательно, сила равна произведению массы на ускорение.

Второй закон динамики можно записать в иной более удобной форме. Учитывая, что ускорение

а = (υ2 — υ1) / (t2 — t1)

подставим это выражение в уравнение второго закона Ньютона. Получим

F = ma = (2 — 1) / (t2 — t1) = (∆(mυ))/t

Что такое импульс

Импульсом, или количеством движения, называется вектор, равный произведению массы тела на его скорость (тυ). Тогда основной закон динамики можно сформулировать следующим образом: сила равна изменению импульса в единицу времени

F = (∆(mυ))/t

Это и есть наиболее общая формулировка второго закона Ньютона. Массу тела Ньютон определил как количество вещества, содержащегося в данной теле. Это определение несовершенно. Из второго закона Ньютона вытекает следующее определение массы. Из равенства 

a1/a2m2/m1 

видно, что чем больше масса тела, тем меньше ускорение получает тело, то есть тем труднее изменить скорость этого тела и наоборот. Следовательно, чем больше масса тела, тем в большей степени это тело способно сохранять скорость неизменной, то есть больше инертности. Тогда можно сказать, что масса есть мера инертности тела.

Эйнштейн доказал, что масса тела остается постоянной только при определенных условиях. В зависимости от скорости движения тела его масса изменяется по такому закону:

где m — масса тела, движущегося со скоростью — масса этого же тела, находящегося в покое; с = 3 • 108м/с скорость света в вакууме.

Проанализируем данное уравнение:

1) если υ«с, то величиной —, как очень малой, можно пренебречь и m = m, то есть при скоростях движения, много меньших скорости света, масса тела не зависит от скорости движения;

2) если υ с, то υ22 ≈ 1, тогда т = m/0— отсюда вытекает, что m → ∞.

По мере увеличения скорости тела для его дальнейшего ускорения нужно будет прикладывать все увеличивающиеся силы. Но бесконечно больших сил, которые потребовались бы для сообщения телу скорости, равной скорости света, в природе не существует. Таким образом, заставить рассматриваемое тело двигаться со скоростью света принципиально невозможно. Со скоростями, близкими к скорости света, современная физика встречается: так разгоняются, например, элементарные частицы в ускорителях.

Масса тела с ростом скорости

Масса тела с ростом скорости увеличивается, но количество вещества остается неизменным, возрастает инертность. Поэтому массу нельзя путать с количеством вещества.

Покажем связь между силой тяжести, массой тела и ускорением свободного падения. Любое тело, поднятое над Землей и ничем не поддерживаемое, падает снова на Землю. Это происходит вследствие того, что между телом и Землей существует притяжение (этот вопрос более подробно рассмотрим позже). 

Сила, с которой тело притягивается к Земле, называется силой тяжести. Падение тел в безвоздушном пространстве под действием силы тяжести (при υ= 0) называется свободным падением. 

Отметим, что для тел, покоящихся в поле сил тяготения, сила тяжести равна весу тела Р.

Весом тела называется сила, с которой тело давит на горизонтальную подставку, неподвижную относительно Земли, или действует на подвес. Если Р— сила тяжести, m — масса, g — ускорение силы тяжести (в данной точке Земли оно для всех тел одинаковой среднее его значение равно 9,8м2), то применяя второй закон динамики, получим

P = mg.

Выразим с помощью этой формулы веса двух различных тел. Тогда:

P1 = m1g и Р2 = m2g. Разделив почленно эти два равенства, будем иметь

P1/P2 = m1/m2

Следовательно, веса тел в данной точке земной поверхности прямо пропорциональны их массам.

Статья на тему Второй закон Ньютона

В курсе физики VII класса вы изучали самый простой вид движения — равномерное движение по прямой линии. При таком движении скорость тела была постоянной и тело за любые равные промежутки времени проходило одинаковые пути.

Большинство движений, однако, нельзя считать равномерными. На одних участках тела могут иметь меньшую скорость, на других — большую. Например, поезд, отходящий от станции, начинает двигаться все быстрее и быстрее. Подъезжая к станции, он, наоборот, замедляет свое движение.

Проделаем опыт. Установим на тележку капельницу, из которой через одинаковые промежутки времени падают капли окрашенной жидкости. Поместим эту тележку на наклонную доску и отпустим. Мы увидим, что расстояние между следами, оставленными каплями, по мере движения тележки вниз будет становиться все больше и больше (рис. 3). Это означает, что за равные промежутки времени тележка проходит неодинаковые пути. Скорость тележки возрастает. Причем, как можно доказать, за одни и те же промежутки времени скорость тележки, съезжающей по наклонной доске, возрастает все время на одну и ту же величину.

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным.

Так, например, опытами установлено, что скорость любого свободно падающего тела (при отсутствии сопротивления воздуха) за каждую секунду возрастает примерно на 9,8 м/с, т. е. если вначале тело покоилось, то через секунду после начала падения оно будет иметь скорость 9,8 м/с, еще через секунду — 19,6 м/с, еще через секунду — 29,4 м/с и т. д.

Физическая величина, показывающая, на сколько изменяется скорость тела за каждую секунду равноускоренного движения, называется ускорением.

a — ускорение.

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с2 и называют «метр на секунду в квадрате».

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 10 м/с2, то это означает, что за каждую секунду скорость тела изменяется на 10 м/с, т. е. в 10 раз быстрее, чем при ускорении 1 м/с2.

Примеры ускорений, встречающихся в нашей жизни, можно найти в таблице 1.

Как рассчитывают ускорение, с которым тела начинают двигаться?

Пусть, например, известно, что скорость отъезжающего от станции электропоезда за 2 с увеличивается на 1,2 м/с. Тогда, для того чтобы узнать, на сколько она возрастает за 1 с, надо 1,2 м/с разделить на 2 с. Мы получим 0,6 м/с2. Это и есть ускорение поезда.

Итак, чтобы найти ускорение тела, начинающего равноускоренное движение, надо приобретенную телом скорость разделить на время, за которое была достигнута эта скорость:

Обозначим все величины, входящие в это выражение, латинскими буквами:

a — ускорение; v — приобретенная скорость; t — время.

Тогда формулу для определения ускорения можно записать в следующем виде:

Эта формула справедлива для равноускоренного движения из состояния покоя, т. е. когда начальная скорость тела равна нулю. Начальную скорость тела обозначают Формула (2.1), таким образом, справедлива лить при условии, что v = 0.

Если же нулю равна не начальная, а конечная скорость (которая обозначается просто буквой v), то формула ускорения принимает вид:

В таком виде формулу ускорения применяют в тех случаях, когда тело, имеющее некоторую скорость v, начинает двигаться все медленнее и медленнее, пока наконец не остановится (v = 0). Именно по этой формуле, например, мы будем рассчитывать ускорение при торможении автомобилей и других транспортных средств. Под временем t при этом мы будем понимать время торможения.

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. 4, а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. 4, б).

При равномерном прямолинейном движении скорость тела не изменяется. Поэтому ускорение при таком движении отсутствует (a = 0) и на рисунках изображено быть не может.

1. Какое движение называют равноускоренным? 2. Что такое ускорение? 3. Что характеризует ускорение? 4. В каких случаях ускорение равно нулю? 5. По какой формуле находится ускорение тела при равноускоренном движении из состояния покоя? 6. По какой формуле находится ускорение тела при уменьшении скорости движения до нуля? 7. Как направлено ускорение при равноускоренном прямолинейном движении?

Экспериментальное задание. Используя линейку в качестве наклонной плоскости, положите на ее верхний край монету и отпустите. Будет ли двигаться монета? Если будет, то как — равномерно или равноускоренно? Как это зависит от угла наклона линейки?

Ускорение свободного падения — движение объекта, который получает ускорение из-за действующей на него силы тяжести; обозначается буквой g и измеряется в м/с². На поверхности Земли ускорение свободного падения примерно равно 9,81 м/с².

На полюсах (Южном и Северном) ускорение свободного падения будет больше, а на экваторе — меньше. Это происходит из-за двух фактов:

  • Земля — не идеальный круг, а приплюснутый шар и её радиус на полюсах меньше, чем на экваторе (ускорение зависит от радиуса),
  • центробежные силы (при вращении Земли) минимально компенсируют гравитацию больше на экваторе, чем на полюсах.

В вакууме тела падают с одинаковой скоростью потому, что ускорение свободного падения не зависит от массы.

Таблица ускорения свободного падения небесных тел

Небесное тело g (в м/с²)
Луна 1,62
Солнце 274
Меркурий 3,72
Венера 8,87
Земля 9,81
Марс 3,711
Юпитер 24,79
Сатурн 10,44
Уран 8,87
Нептун 11,15

От чего зависит ускорение свободного падения?

Ускорение свободного падения зависит от массы планеты и радиуса планеты — чем она тяжелее, тем сильнее притягивает тела (т.е. масса тела не влияет на ускорение).

Возможно для будущих вычислений нужны будут эти данные:

  1. Масса Земли = 5,98 × (10^24) кг (или 5,972E24 кг)
  2. Радиус Земли = 6 371 км = 6,37×(10^6) м.

Как найти ускорение свободного падения?

Формула ускорения свободного падения

Гравитационная постоянная («G», не путайте с «g») — это фундаментальная физическая константа, которая примерно равна

и связывает силы гравитационного притяжения между двумя телами (G) с их массами (m1 и m2) и расстоянием между ними (R) в формуле:

Пример расчёта ускорения свободного падения (для Земли):

Вспомним формулу:

Как узнать время падения тела?

Формула времени свободного падения (когда тело падает вертикально):

t = V / g = √(2h/g)

Где:

  • t — время
  • V — скорость тела
  • g — ускорение ≈ 9,8 м/с²
  • h — расстояние

Пример:

Высота (h) = 20 м

Нужно найти скорость и время падения.

Решение:

Формула скорости:

V0 = 0

g ≈ 9,8 м/с²

h = 20 м

V² = 0² + 2 × 9,8 м/с² × 20 м ⇔ V = √392 м/с ≈ 19,8 м/с

Зная скорость, применяем эту формулу:

t = V / g = (19,8 м/с) / (9,8 м/с²) ≈ 2,02 с

Либо используя только высоту и ускорение:

t = √(2h/g) = √(2 × 20 м / 9,8 м/с²) ≈ 2,02 с

Где нужны знания о свободном падении?

Они могут понадобиться:

  • в авиации,
  • в космонавтике,
  • при поиске полезных ископаемых (там, где есть залежи тяжёлых ископаемых, g меняется),
  • при разработке новых лыжных трамплинов и полос приземления,
  • при разработке новых автомобилей (рассчитываются наилучшие показатели для экономии топлива).

Узнайте также про Закон сохранения энергии, Силу Архимеда, Законы Ньютона и Космологию.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий