Что такое тиристор. Принцип работы и правила пользования

Тиристор представляет собой электронный силовой частично управляемый ключ. Этот прибор, с помощью сигнала управления может находиться только в проводящем состоянии, то есть быть включенным. Для того, чтобы его выключить, нужно проводить специальные мероприятия, которые обеспечивают падение прямого тока до нулевого значения. Принцип работы тиристора заключается в односторонней проводимости, в закрытом состоянии может выдержать не только прямое, но и обратное напряжение.

Свойства тиристоров

По своим качествам, тиристоры относятся к полупроводниковым приборам. В их полупроводниковой пластине присутствуют смежные слои, обладающие различными типами проводимости. Таким образом, каждый тиристор представляет собой прибор, имеющий четырехслойную структуру р-п-р-п. К крайней области р-структуры производится подключение положительного полюса источника напряжения. Поэтому, данная область получила название анода. Противоположная область п-типа, куда подключается отрицательный полюс, называется катодом. Вывод из внутренней области осуществляется с помощью р-управляющего электрода.

Классическая модель тиристора состоит из двух транзисторов, имеющих разную степень проводимости. В соответствии с данной схемой, производится соединение базы и коллектора обоих транзисторов. В результате такого соединения, питание базы каждого транзистора осуществляется с помощью коллекторного тока другого транзистора. Таким образом, получается цепь с положительной обратной связью.

Если ток отсутствует в управляющем электроде, то транзисторы находятся в закрытом положении. Течение тока через нагрузку не происходит, и тиристор остается закрытым. При подаче тока выше определенного уровня, в действие вступает положительная обратная связь. Процесс становится лавинообразным, после чего происходит открытие обоих транзисторов. В конечном итоге, после открытия тиристора, наступает его стабильное состояние, даже в случае прекращения подачи тока.

Работа тиристора при постоянном токе

Рассматривая электронный тиристор принцип работы которого основан на одностороннем движении тока, следует отметить его работу при постоянном токе.

Обычный тиристор включается путем подачи импульса тока в цепь управления. Эта подача осуществляется со стороны положительной полярности, противоположной, относительно катода.

Как проверить тиристор тестером

Полевой транзистор принцип работы

Симистор принцип работы при коммутации

Принцип работы транзистора

Триод

Шаговый двигатель. Принцип работы

Поделись знанием: Материал из Википедии — свободной энциклопедии Перейти к: навигация, поиск

Тири́стор — полупроводниковый прибор, выполненный на основе монокристаллаполупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния:

  • «закрытое» состояние — состояние низкой проводимости;
  • «открытое» состояние — состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров (трех-переходной структуры) — управление мощной нагрузкой с помощью слабых сигналов, или (для двух-переходной струтуры) где открывание тиристора происходит, если разность потенциалов между его выводами превышает напряжение пробоя. Также тиристоры применяются в переключающих устройствах.

Существуют различные виды тиристоров, которые подразделяются, главным образом:

  • по способу управления;
  • по проводимости:
    • тиристоры, проводящие ток в одном направлении (например, тринистор, изображённый на рисунке);
    • тиристоры, проводящие ток в двух направлениях (например, симисторы, симметричные динисторы).

Вольт-амперная характеристика (ВАХ) тиристора нелинейна и показывает, что сопротивление тиристора отрицательное дифференциальное. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала. Тиристор остаётся в открытом состоянии до тех пор, пока протекающий через него ток превышает некоторую величину, называемую током удержания.

Устройство и основные виды тиристоров

Аналогичные соотношения можно получить для n-p-n транзистора при изменении направления токов на противоположное. Из рис. 4 следует, что коллекторный ток n-p-n транзистора является одновременно базовым током p-n-p транзистора. Аналогично коллекторный ток p-n-p транзистора и управляющий ток I_g втекают в базу n-p-n транзистора. В результате, когда общий коэффициент усиления в замкнутой петле превысит 1, оказывается возможным лавинообразный процесс увеличения тока через структуру, при этом напряжение на приборе становится равным порядка 1 В и ток ограничен только сопротивлением внешней цепи.

Ток базы p-n-p транзистора равен I_{B1} = (1 – alpha_1) cdot I_A – I_{Co1}. Этот ток также протекает через коллектор n-p-n транзистора.

Ток коллектора n-p-n транзистора с коэффициентом усиления alpha_2 равен I_{C2} = alpha_2 cdot I_K + I_{Co2}.

Приравняв I_{B1} и I_{C2}, получим:

(1 – alpha_1) cdot I_A – I_{Co1} = alpha_2 cdot I_K + I_{Co2}.

Так как I_K = I_A + I_g, то:

I_A = frac{ alpha_2 I_g + I_{ Co1 }+I_{ Co2 } }{ 1 – ( alpha_1 + alpha_2 ) }.

Это уравнение описывает статическую характеристику прибора в диапазоне напряжений вплоть до пробоя. После пробоя прибор работает как p-i-n-диод. Отметим, что все слагаемые в числителе правой части уравнения малы, следовательно, пока член alpha_1 + alpha_2 < 1, ток I_A мал. Коэффициенты alpha_1,alpha_2 зависят от I_A и растут с увеличением тока вплоть до высоких его величин. Если alpha_1 + alpha_2 = 1, то знаменатель дроби в приведённой формуле для анодного тока обращается в нуль, ток растёт и происходит прямой обратимый пробой (или включение тиристора).

Если полярность напряжения между анодом и катодом сменить на обратную, то переходы J1 и J3 будут смещены в обратном направлении, а J2 — в прямом. При таких условиях включение прибора не происходит, так как в качестве эмиттера носителей заряда работает только центральный p-n переход и лавинообразный процесс нарастания тока становится невозможным.

Ширина обеднённых слоёв и энергетические зонные диаграммы в равновесии, в режимах прямого запирания и прямой проводимости показаны на рис. 5. При нулевом напряжении на приборе обеднённая область каждого перехода и контактные потенциалы определяются только профилем распределения примесей. Когда к аноду приложено положительное напряжение, переход J2 стремится сместиться в обратном направлении, а переходы J1 и J3 — в прямом. Падение напряжения между анодом и катодом равно алгебраической сумме падений напряжения на переходах: V_{AK} = V_1 + V_2 + V_3. При повышении напряжения возрастает ток через прибор и, следовательно, увеличиваются alpha_1 и alpha_2.

Благодаря регенеративному характеру этих процессов прибор в конце концов перейдёт в открытое состояние. После включения тиристора протекающий через него ток должен быть ограничен внешним сопротивлением нагрузки, в противном случае при достаточно высоком токе тиристор выйдет из строя. Во включенном состоянии переход J2 смещён в прямом направлении (рис. 5, в), и падение напряжения V_{AK}=V_1-|V_2|+V_3 приблизительно равно сумме напряжения на одном прямосмещенном p-n переходе и напряжения коллектор-эмиттер насыщенного транзистора.

Двухтранзисторная модель используется не только для изучения и описания процессов, происходящих в тиристоре. Включение p-n-p и n-p-n реальных транзисторов по приведенной схеме является схемотехническим аналогом тиристора и иногда используется в электронной аппаратуре.

Режим прямой проводимости

Когда тиристор находится во включенном состоянии, все три перехода смещены в прямом направлении. Дырки инжектируются из области p1, а электроны — из области n2, и структура n1-p2-n2 ведёт себя аналогично насыщенному транзистору с удалённым диодным контактом к области n1. Следовательно, прибор в целом аналогичен p-i-n (p+-i-n+)-диоду.

Эффект dU/dt

При подаче напряжения прямой полярности на анод и катод тиристора со скоростью более некоторой критической dU/dt> dUкрит/dt произойдёт открытие p-n-p-n структуры. Механизм данного эффекта обусловлен наличием паразитной ёмкости анод-управляющий электрод. Данный эффект ограничивает использование тиристоров в высокочастотных схемах, хотя иногда применяется для управления тиристором. Параметр dUкрит/dt указывается в справочниках на каждую модель тиристора.

Эффект di/dt

Если ток, протекающий через тиристор в прямом направлении (в открытом состоянии) будет возрастать со скоростью более некоторой критической di/dt > diкрит/dt, то произойдёт разрушение структуры и выход тиристора из строя, что объясняется ограниченным ростом площади протекания носителей, увеличением плотности тока и локальным тепловым пробоем. Параметр diкрит/dt является справочным и указывается в каталогах на каждую модель тиристора.

Классификация тиристоров

По проводимости и количеству выводов[3][4][5]:

  • тиристор диодный (доп. название «динистор») — тиристор, имеющий два вывода:
    • тиристор диодный, не проводящий в обратном направлении;
    • тиристор диодный, проводящий в обратном направлении;
    • тиристор диодный симметричный (англ. en:DIAC);
  • тиристор триодный (доп. название «тринистор») — тиристор, имеющий три вывода:
    • тиристор триодный, не проводящий в обратном направлении (доп. название «тиристор»);
    • тиристор триодный, проводящий в обратном направлении (доп. название «тиристор-диод»);
    • тиристор триодный симметричный (иначе, отечественное название — «симистор», англ. en:TRIAC[6]);
    • тиристор триодный асимметричный;
    • запираемый тиристор (доп. название «тиристор триодный выключаемый»).

Ранее тиристоры в отечественной литературе назывались «управляемыми диодами».

Отличие динистора от тринистора

Принципиальных различий между динистором и тринистором нет, однако если открытие динистора происходит при достижении между выводами анода и катода определённого напряжения, зависящего от типа данного динистора, то в тринисторе напряжение открытия может быть специально снижено, путём подачи импульса тока определённой длительности и величины на его управляющий электрод при положительной разности потенциалов между анодом и катодом, и конструктивно тринистор отличается только наличием управляющего электрода. Тринисторы являются наиболее распространёнными приборами из «тиристорного» семейства.

Отличие тиристора триодного от запираемого тиристора

Переключение в закрытое состояние обычных тиристоров производят либо снижением тока через тиристор до значения Ih, либо изменением полярности напряжения между катодом и анодом.

Запираемые тиристоры, в отличие от обычных тиристоров, под воздействием тока управляющего электрода могут переходить из закрытого состояния в открытое состояние, и наоборот. Чтобы закрыть запираемый тиристор, необходимо через управляющий электрод пропустить ток противоположной полярности, чем полярность, которая вызывала его открытие.

Симистор

Симистор (симметричный тиристор) представляет собой полупроводниковый прибор, по своей структуре является аналогом встречно-параллельного включения двух тиристоров. Способен пропускать электрический ток в обоих направлениях.

Характеристики тиристоров

Современные тиристоры изготовляют на токи от 1 мАдо 10 кА; на напряжения от нескольких В до нескольких кВ; скорость нарастания в них прямого тока достигает 109 А/с, напряжения — 109 В/с, время включения составляет величины от нескольких десятых долей до нескольких десятков мкс, время выключения — от нескольких единиц до нескольких сотен мкс; КПД достигает 99 %. К распространённым отечественным тиристорам можно отнести приборы КУ202 (25-400 В, ток 10 А), к импортным — MCR100 (100-600 В, 0.8 А), 2N5064 (200 В, 0.5 A), C106D (400 В, 4 А), TYN612 (600 В, 12 А), BT151 (800 В, 7.5-12 А) и другие. Также следует помнить, что не все тиристоры допускают приложение обратного напряжения, сравнимого с допустимым прямым напряжением.

Применение

Тиристоры применяются в составе следующих устройств:

Транзисторы – распространенные полупроводниковые радиоэлементы. На их основе делают большинство электронных схем, а также микросхем. Главное их свойство – способность усиливать электрические сигналы. Изменяя слабый сигнал на управляющем электроде транзистора, можно управлять усиленным выходным сигналом. Есть еще довольно распространенный вид полупроводниковых радиоэлементов — тиристоры. Они тоже имеют управляющий электрод, но управление выходным сигналом в принципе отличается от транзисторов. В этой небольшой статье путем сравнения рассмотрены эти различия.

За основу возьмем простую схему с лампочкой. Коммутируя малый ток в цепи управляющего электрода будем управлять в разы большим током лампочки.

Вот как выглядит эта схема на транзисторе и на тиристоре:

Рассмотрим, как можно управлять свечением лампочки в схеме на транзисторе. При наличии питания и замыкании выключателя S1 на управляющий электрод транзистора (базу) будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в базе) транзистор откроется, лампочка загорится.

Изменяя величину тока в базе с помощью переменного сопротивления, мы можем открывать транзистор больше или меньше, меняя таким образом яркость свечения лампочки. Последовательно с переменным сопротивлением стоит постоянное для того, чтобы при нулевом сопротивлении переменного сопротивления ток базы не превысил допустимое значение и транзистор не вышел из строя. Выключить лампочку мы можем, разомкнув выключатель S1.

Теперь рассмотрим, как можно управлять свечением лампочки в схеме, выполненной на тиристоре.

При наличии питания и замыкании выключателя S2 на управляющий электрод тиристора будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в цепи управляющего электрода) тиристор откроется, лампочка загорится. А вот теперь главное отличие. Мы не можем изменять яркость лампочки изменяя сопротивление в цепи управляющего электрода. Более того, мы можем вообще разомкнуть выключатель S2 и лампочка будет светиться, но только в том случае, если ток лампочки протекающий через открытый тиристор будет больше определенного значения, называемого током удержания. Он у каждого типа тиристора свой. Чем мощнее тиристор, тем большее значение тока удержания. Погасить лампочку мы можем, только уменьшив ток через анод-катод тиристора до значения меньше тока удержания или разомкнув выключатель S3 (что равносильно току удержания равном 0).

Это главная особенность применения тиристоров и главное их отличие от транзисторов.

Другими словами, тиристор может быть или полностью открыт, или полностью закрыт. Это и достоинство, и недостаток. Достоинство в том, что падение напряжения небольшое и потери ниже, чем, например, у наполовину открытого транзистора. Недостаток в том, что схема управления усложняется.

Тиристоры проще использовать в цепях переменного тока. Мы должны открывать тиристор каждую полуволну при ее нарастании. Когда полуволна спадает, тиристор сам закроется. Задерживая время открывания при приходе полуволны, мы меняем время открытого состояния тиристора и, следовательно, значение тока в нагрузке.

Как пример, рассмотрим питание схемы на тиристоре от источника переменного напряжения.

Теперь, при замыкании выключателя лампочка будет гореть, а при размыкании, гаснуть. Как видно из осциллограммы, каждую полуволну, в ее конце ток приближается к 0. Если выключатель S2 разомкнут, то с приходом новой полуволны тиристор не откроется.

Отсюда вывод.

Тиристоры целесообразно использовать в цепях переменного или импульсного напряжения (тока). При этом на управляющий электрод достаточно подать короткий отпирающий импульс. Закроется тиристор сам, после окончания импульса в нагрузке. При приходе следующего импульса в нагрузке на управляющий электрод снова нужно подавать отпирающий импульс и так далее.

Материал статьи продублирован на видео:

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики              

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

1. Падение напряжения при максимальном токе анода (VT или Uос).

2. Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

3. Обратное напряжение (VR(PM) или Uобр).

4. Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

5. Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

6. Обратный ток (IR) — ток при определенном обратном напряжении.

7. Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

8. Постоянное отпирающее напряжение управления (VGT или UУ).

9. Ток управления (IGT).

10. Максимальный ток управления электрода IGM.

11. Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Интересно:

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках “zero crossing detector circuit” или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…Ранее ЭлектроВести писали, почему в современных инверторах используют транзисторы, а не тиристоры.По материалам electrik.info

Общие сведения. Устройство.Режимы работы

Тиристор — это полупроводниковый прибор с тремя и более р—п переходами, ВАХ которого имеет участок с отрицательным дифференциальным сопротивлением.

При работе в схеме тиристор может находиться в двух состояниях. В одном состоянии (закрытом, или выключенном) тиристор имеет высокое сопротивление и пропускает малый ток, в другом (открытом, или включенном) — сопротивление тиристора мало и через него протекает большой ток.

Тиристоры широко применяются в радиолокации, устройствах радиосвязи, в автоматике — как приборы с отрицательной проводимостью, управляемые ключи и вентили, пороговые элементы, преобразователи энергии, триггеры, не потребляющие ток в исходном состоянии. По сравнению с биполярными транзисторами тиристоры могут обеспечить более высокий коэффициент усиления по току включения, иметь большой ток и одновременно высокое напряжение, что важно для получения хороших характеристик устройств, работающих при высоких уровнях мощности. Тиристоры обеспечивают высокий КПД преобразования энергии, обладают хорошей надежностью и долговечностью, имеют малые габариты, просты в эксплуатации.

Устройство тиристоров. В зависимости от числа выводов тиристоры делятся на диодные, триодные и тетродные, имеющие соответственно два, три и четыре вывода от рпр—п структуры. Контакт к внешнему р слою называется анодом (А), а к

Рис. 5.1

внешнему л-слою — катодом (К) (рис. 5.1, а). Анодная р-область и катодная л-область называются соответственно р- и п-эмиттера- ми. Области л и р типа, расположенные между анодом и катодом, называются базами, а выводы от них образуют управляющие электроды (УЭ). Наиболее часто используются трехэлектродные приборы. Помимо четырехслойных структур, некоторые виды тиристоров имеют большее число полупроводниковых областей. К таким приборам относится симистор (симметричный тиристор), который может включаться при различных полярностях приложенного напряжения. Он сформирован структурой из пяти и более слоев и используется в цепях переменного тока как двусторонний ключ.

Типичное распределение эффективной концентрации атомов примеси в диффузионно-сплавном тиристоре представлено на рис. 5.1,6. На подложке л, методом двусторонней диффузии сформированы области р, и р2. Слой л2 создается методом сплавления или односторонней диффузии.

Режимы работы. В зависимости от напряжения на аноде и тока, протекающего через прибор, можно выделить несколько режимов работы тиристора. Эти режимы соответствуют определенным участкам ВАХ тиристора, представленной на рис. 5.1, в. В отсутствие тока в цепи УЭ, т. е. при 7=0, ВАХ вырождается в характеристику диодного тиристора, когда цепи управляющих электродов отсутствуют или разомкнуты. Чтобы снять такую характеристику, необходимо в качестве источника электрического питания использовать генератор тока с ЭДС <‘ <sub>А (см. рис. 5.1, а). В этом случае ток в цепи задается источником, и в зависимости от величины тока между катодом и анодом будет возникать соответствующая разность потенциалов. Выделяют пять основных режимов работы тиристора.

Режим 1 (область ВАХ О—1) — напряжение на аноде положительно относительно катода, ток незначителен (несколько мкА). Эта область соответствует закрытому состоянию (режим прямого запирания).

Режим 2 (область 1—2) — участок характеристики с отрицательным дифференциальным сопротивлением. Начинается в точке ВАХ, когда (Ш/(1 = 0. Напряжение на тиристоре в этой точке называется напряжением включения (С/ВКЛ), а ток через прибор — током включения (/вкл).

Режим 3 (область 2—3) соответствует открытому состоянию (режим прямой проводимости), начинается в точке 2. Напряжение в этой точке называется напряжением в открытом состоянии (С/откр), или (реже) напряжением удержания (ВЈ/уд), а ток — током удержания (/уд). Параметры /уд и С/откр — соответственно минимальные ток и напряжение, необходимые для поддержания тиристора в открытом состоянии.

Режим 4 (область 0—4) называется режимом обратного запирания, в котором напряжение на аноде относительно катода отрицательно.

Режим 5 (область 4—5) — режим обратного пробоя. Начинается при напряжении на аноде, равном напряжению пробоя ти- ристора (1/про6).

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий