Что такое сверхновая звезда? Значение сверхновая звезда в энциклопедии Кольера

| Web-технологии | Формирование задач | Коммерческое предложение |

Взрыв сверхновой

image Сверхновая — это настоящий взрыв зведы, когда большая часть ее массы (или даже вся) сбрасывается со скоростью до 10 тысяч км/с в пространство, а оставшаяся центральная часть схлопывается (коллапсирует) в сверхплотную нейтронную звезду или даже в черную дыру

Сверхновые звезды Обратимся теперь к явлению сверхновой звезды — одному из самых грандиозных космических явлений. Коротко говоря, сверхновая — это настоящий взрыв зведы, когда большая часть ее массы (или даже вся) сбрасывается со скоростью до 10 тысяч км/с в пространство, а оставшаяся центральная часть схлопывается (коллапсирует) в сверхплотную нейтронную звезду или даже в черную дыру. Сверхновые играют фундаментальную роль в эволюци звезд, являясь «финалом» жизни звезд с массами более 8-10 солнечных масс, рождая нейтронные звезды и черные дыры и обогащая межзвездную среду тяжелыми химическими элементами (практически все химические элементы тяжелее кислорода когда-то образовались при взрыве какой-нибудь массивной звезды. Не в этом ли разгадка извечной тяги человечества к звездам? Ведь в мельчайшей кровинке живой материи есть атомы железа, каждый из которых был синтезирован при гибели массивной звезды, и в этом смысле люди сродни тому снеговику из сказки Г.-Х. Андерсена, который испытывал необъяснимую любовь к жаркой печке, потому что основой его была кочерга … ). По своим наблюдаемым характеристикам сверхновые принято разделять на 2 широких класса — сверхновые 1го и 2-го типа. В спетрах сверхновых 1-го типа нет линий водорода, зависимость их блеска от времени (т.н. кривая блеска) почти не меняется от сверхновой к сверхновой, светимость в максимуме блеска примерно одинакова. Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр, формы их кривых блеска весма разнообразны, блеск в максимуме сильно различается у разных сверхновых. Чтобы дополнить картину различий между этими типами сверхновых укажем, что только сверхновые 1-го типа вспыхивают в эллиптических галактиках (т.е. галактиках без спиральной структуры с пониженным темпом звездообразования, основной состав которых — маломассивные красные звезды), в то время как в спиральных галактиках (к числу которых принадлежит и наша галактика Млечный Путь) встречаются оба типа сверхновых, причем установлено, что сверхновые 2-го типа концентрируются к спиральным рукавам галактик, где идет активный процесс звездообразования и много молодых массивных звезд. Эти феноменологические особенности наводят на мысль о различной природе двух типов сверхновых. Сейчас надежно установлено, что при взрыве любой сверхновой освобождается всегда примерно одно и то же (гигантское!) количество энергии 1053 эрг, что соответствует энергии связи образующегося компактного остатка (напомним, чтоэнергия связи звезды соответствует такому количеству энергии, которое нужно затратить, чтобы «распылить» вещество звезды на бесконечно удаленное расстояние). Основная энергия взрыва уносится не фотонами, а нейтрино — релятивисткой частицей с очень малой массой или вообще безмассовой (этот вопрос активно исследуется последние 10-20 лет на самых мощных ускорителях элементарных частиц), так как большая плотность звездных недр не позволяет фотонам свободно покидать звезду, а нейтрино чрезвычайно слабо взаимодействуют с веществом (как говорят, имеют очень малое сечение взаимодействия) и для них недра звезды вполне «прозрачны». Окончательной самосогласванной теории взрыва сверхновых с образованием компактного остатка и сбросом внешней оболочки не существует ввиду крайней сложности учета всех физических процессов, происходящих при вспышке сверхновой. Однако все данные говорят о том, что сверхновые 2-го типа являются следствием коллапса ядра звезды, в котором происходило термоядерное горение сначала водорода в гелий, затем гелия в углерод и так далее до образования изотопов элементов «железного пика» — железа, кобальта и никеля, атомные ядра которых имеют максимальную энергию связи в расчете на одну частицу (ясно, что присоединение новых частиц к ядру, например, железа, будет требовать затрат энергии, а потому термоядерное горение и «останавливается» на элементах железного пика).Что же заставляет центральные части массивной звезды терять устойчивость и коллапсировать как только железное ядро станет достаточно массивным (около 1.5 масс Солнца)? В настоящее время известны два основных фактора, приводящие к коллапсу.Во-первых, это «развал» ядер железа на 13 альфа-частиц (ядер гелия) с выделением фотонов (т.н. фотодиссоциация железа), иво-вторых, захват электронов протонами с образованием нейтронов (т.н. нейтронизация вещества). Оба процесса становятся возможными при больших плотностях (свыше 1 тонны в куб. см), устанавливающихся в центре звездных недр в конце эволюции, и оба они эффективно снижают «упругость» вещества, которая фактически и противостоит сдавливающему действию сил притяжения. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящее основную энергию, запасенную в коллапсирующем ядре. В отличие от процесса катастрофического коллапса ядра, разработанного достаточно детально, сброс оболочки звезд (собственно взрыв) не так-то просто получить. По-видимому, существенную роль в этом процессе играет нейтрино. Как показывают расчеты, проведенные на суперкомпьютерах, плотность вблизи ядра настолько высока, что даже слабовзаимодействующее с веществом нейтрино оказывается на какое-то время «запертым» внешними слоями звезды. Но гравитационные силы притягивают оболочку к ядру и возникает ситуация, похожая на ту, которая получается при попытке налить более плотную жидкость, например, воду, поверх менее плотной (например, керосина или масла) — из опыта хорошо известно, что легкая жидкость стремится «всплыть» из-под тяжелой (в этом проявляется так называемая неустойчивость Рэлея-Тэйлора). Этот механизм приводит к возникновению гигантских конвективных движений и в конце концов импульс нейтрино передается вышележащей оболочке, которая сбрасывается в окружающее звезду пространство. Интересно отметить, что возможно именно эти нейтринные конвективные движения приводят к нарушению сферической симметрии взрыва сверхновой (иными словами, появляется направление, вдоль которого преимущественно выбрасывается вещество) — и тогда образующийся остаток получает импульс отдачи и начинает двигаться в пространстве по инерции со скоростью до тысячи км/с (столь большие пространственные скорости наблюдаются у молодых нейтронных звезд — радиопульсаров). Описанная схематическая картина взрыва сверхновой 2-го типа позволяет объяснить основные наблюдательные особенности этого грандиозного явления. Более того, теоретические предсказания этой модели (особенно касающиеся полной энергии и спектра нейтринной вспышки) оказались в отличном согласии с зарегистрированным нейтринным импульсом, пришедшим 23 февраля 1987 г. от сверхновой в Большом Магеллановом Облаке. Теперь несколько слов о сверхновых 1-го типа. Отсутствие свечения водорода в их спектрах говорит о том, что взрыв произошел в звезде, лишенной водородной оболочки. Как сейчас полагают, это может быть звезда типа Вольфа-Райе (фактически это богатые гелием, углеродом и кислородом ядра звезд, у которых давление света «сдуло» верхнюю водородную оболочку, или же, если такая массивная звезда входила в состав тесной двойной системы, эта оболочка «перетекла» на соседнюю звезду под действием мощных приливных сил), у которой коллапсирует проэволюционировавшее ядро (т.н. сверхновые типа 1b), или взрывающийся белый карлик.Как может взорваться белый карлик? Ведь это очень плотная звезда, в которой не идут ядерные реакции, а силам гравитации противостоит давление плотного газа, состоящего из электронов и ионов, которое вызвано существенно квантовыми свойствами электронов (т.н. вырожденный электронный газ). Причина здесь та же, что и при коллапсе ядер массивных звезд — уменьшение упругости вещества звезды при повышении ее плотности. Это опять же связано со «вдавливанием» электронов в протоны с образованием нейтронов, а также с некоторыми релятивистскими эффектами, которые мы здесь не будем рассматривать. Как же можно повысить плотность белого карлика? Это невозможно, если он одиночный. Но если белый карлик входит в состав достаточно тесной двойной системы, то под действием гравитационных сил газ с соседней звезды может перетекать на белый карлик (вспомните случай новых звезд!), и при некоторых условиях масса (а значит и плотность) его будет постепенно возрастать, что в конечном счете и приведет к коллапсу и взрыву. Другой возможный вариант более экзотичен, но не менее реален — это столкновение двух белых карликов. Как такое возможно, спросит внимательный читатель, ведь вероятность столкнуться двум белым карликам в пространстве ничтожна, т.к. ничтожно число звезд в единице объема (от силы несколько звезд в 100-1000 парсеках). И здесь (в который уж раз!) «виноваты» оказываются двойные звезды, но теперь уже состоящие из двух белых карликов. Не вдаваясь в детали их образования и эволюции, заметим только, что, как следует из общей теории относительности А.Эйнштейна, две любые массы, обращающиеся по орбите вокруг друг друга, рано или поздно должны столкнуться из-за постоянного, хотя и весьма незначительного, уноса энергии из такой системы волнами тяготения — гравитационными волнами (например, Земля и Солнце, живи последнее бесконечно долго, столкнулись бы из-за этого эффекта, правда через колоссальное время, намного порядков превосходящее возраст Вселенной). Оказывается, в случае двойных систем с массами звезд около солнечной (2*1030 кг) их «слияние» должно произойти за время меньшее возраста Вселенной (примерно 10 миллиардов лет). Как показывают оценки, в типичной галактике такие двойные белые карлики могут сливаться раз в несколько сотен лет. Гигантская энергия, освобождаемая при этом катастрофическом процессе, вполне достаточна для объяснения явления Сверхновой типа 1а. Кстати, примерная одинаковость масс белых карликов делает все такие слияния «похожими» друг на друга, поэтому сверхновые типа 1а по своим характеристикам должны выглядеть одинаково вне зависимости когда и в какой галактике произошло это событие. Это свойство сверхновых типа 1а в настоящее время используется учеными для получения независимой оценки важнейшего космологического параметра — постоянной Хаббла, которая является количественной мерой скорости расширения Вселенной. Мы рассказали лишь о наиболее грандиозных взрывах звезд, происходящих во Вселенной и наблюдаемых в оптическом диапазоне. Мы отмечали выше, что в случае Сверхновых звезд основная энергия взрыва уносится нейтрино, а не светом, поэтому исследованеи неба методами нейтринной астрономии имеет интереснейшие перспективы и позволит в будущем «заглянуть» в самое «пекло» сверхновой, скрытое огромными толщами непрозрачного для света вещества. Еще более удивительные открытия сулит гравитационно-волновая астрономия, которая в недалеком будущем расскажет нам о грандиозных явлениях слияния двойных белых карликов, нейтронных звезд и черных дыр. В« Назад Отзывы >>>

Последние поступления:

читать далее…

ТехЗадание на Землю

Пpоект Genesis (из коpпоpативной пеpеписки)

читать далее…

Шпаргалка по работе с Vim

читать далее…

Ошибка: Error: Cannot find a valid baseurl for repo

читать далее…

Linux Optimization

Prelink

читать далее…

В  ДомойКосмические явленияСверхновая звезда

image

Сверхновая звезда – взрыв умирающих очень крупных звезд с огромным выбросом энергии, в триллион раз превышающая энергию Солнца. Сверхновая звезда может осветить всю галактику, а свет, посланный звездой, дойдет то края Вселенной.Если одна из таких звезд взорвется на расстоянии 10 световых лет от Земли, то Земля полностью сгорит от выбросов энергии и радиации.

Сверхновая звезда

Сверхновые звезды не только уничтожают, они так же восполняют необходимые элементы в космос: железо, золото, серебро и другие. Всё что мы знаем о Вселенной было создано из останков когда-то взорвавшейся сверхновой звезды. Сверхновая звезда один из самых красивых и интересных объектов во Вселенной. Самые крупные взрывы во Вселенной оставляют после себя особые, самые странные останки во Вселенной:

Нейтронные звезды

Нейтронные очень опасные и странные тела. Когда гигантская звезда превращается в сверхновую, ее ядро сжимается до размера с земной мегаполис. Давление внутри ядра настолько велико, что даже атомы внутри начинают плавиться. Когда атомы настолько спрессованы, что между ними не остается никакого пространства накапливается колоссальная энергия и происходит мощнейший взрыв. После взрыва остается невероятно плотная Нейтронная звезда. Чайная ложка Нейтронной звезды будет весить 90 млн. тонн.

Пульсары

Пульсар – останки после взрыва сверхновой звезды. Тело которое схожее с массой и плотностью нейтронной звезды. Вращаясь с огромной скоростью, пульсары выпускают в космос радиационные вспышки из северного и южного полюсов. Скорость вращения может достигать 1000 оборотов в секунду.

Магнитары

Когда взрывается звезда в 30 раз больше нашего Солнца она создает звезду, которая называется Магнитаром. Магнитары создают мощные магнитные поля они еще более странные чем Нейтронные звезды и Пульсары. Магнитное поле Магнитара превышает земное в несколько тысяч раз.

Черные дыры

После гибели гиперновых звезд, звезд еще более крупнее чем суперзвезда, образуется самое загадочное и опасное место во Вселенной – черная дыра. После смерти такой звезды, черная дыра начинает поглощать ее останки. Материала для поглощения у черной дыры слишком много и она выбрасывает останки звезды обратно в космос, образуя 2 луча гамма излучений.

Что касается нашей Солнечной системы, то Солнце, конечно, не обладает достаточной массой для того, чтобы стать черной дырой, пульсаром, магнитаром или даже нейронной звездой. По космическим меркам наша звезда очень мала для такого финала её жизни. Ученые говорят о том, что после истощения топлива наша звезда увеличится в размерах в несколько десятков раз, что позволит ей поглотить в себя планеты земной группы: Меркурий, Венеру, Землю и, возможно, Марс.

Из Википедии, бесплатной энциклопедии

Остаток сверхновой Кеплера Остаток сверхновой RCW 103 c нейтронной звездой1E 161348-5055 в центре

Сверхновая звезда или вспышка сверхновой — явление, в ходе которого звезда резко увеличивает свою яркость на 4—8 порядков (на 10—20 звёздных величин) с последующим сравнительно медленным затуханием вспышки[1][2]. Является результатом катаклизмического процесса, возникающего в конце эволюции некоторых звёзд и сопровождающегося выделением огромного количества энергии.

Как правило, сверхновые звёзды наблюдаются постфактум, то есть когда событие уже произошло, и его излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвёздное пространство, а из оставшейся части вещества ядра взорвавшейся звезды, как правило, образуется компактный объект — нейтронная звезда, если масса звезды до взрыва составляла более 8 солнечных масс (M), либо чёрная дыра при массе звезды свыше 40 M (масса оставшегося после взрыва ядра — свыше 5 M). Вместе они образуют остаток сверхновой.

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.

Помимо всего прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности химически эволюционируют.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд.

Имя составляется из метки SN, после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения в окончании имени из заглавных букв от A до Z. Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa, ab, и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova) с небесными координатами в формате Jhhmmssss+ddmmsss.

Общая картина[править | править код]

Современная классификация сверхновых[3]
Класс Подкласс Механизм
IЛинии водорода отсутствуют Сильные линии ионизированного кремния (Si II) на 6150 Å Ia

После взрыва ничего не остаётся (даже карлика).

Термоядерный взрыв
Iax[4]В максимуме блеска имеют меньшую светимость в сравнение с Ia. После взрыва остаётся белый карлик, который приобретает большую скорость движения.
Линии кремния слабые или отсутствуют Гравитационный коллапс
IIПрисутствуют линии водорода
II-LЗвёздная величина линейно уменьшается со временем[5]

Кривые блеска[править | править код]

Кривые блеска для I типа в высокой степени сходны: 2—3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25—40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин. Абсолютная звёздная величина максимума в среднем для вспышек Ia составляет MB=−19.5m{textstyle M_{B}=-19.5^{m}}Крабовидная туманность (изображение в рентгеновских лучах), хорошо видна внутренняя ударная волна, свободно распространяющийся ветер, а также полярное струйное течение (джет).

Каноническая схема молодого остатка следующая[7]:

  1. Возможный компактный остаток; обычно это пульсар, но возможно и чёрная дыра.
  2. Внешняя ударная волна, распространяющаяся в межзвёздном веществе.
  3. Возвратная волна, распространяющаяся в веществе выброса сверхновой.
  4. Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур TS ≥ 107 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1—20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и других элементов указывают на тепловую природу излучения из обоих слоёв.

Оптическое излучение молодого остатка создаёт газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а, значит, газ остывает быстрее, и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Волокна в Кассиопее A дают понять, что происхождение сгустков вещества может быть двояким. Так называемые быстрые волокна разлетаются со скоростью 5000—9000 км/с и излучают только в линиях O, S, Si — то есть это сгустки, сформированные в момент взрыва сверхновой. Стационарные конденсации же имеют скорость 100—400 км/с, и в них наблюдается нормальная концентрация H, N, O. Вместе это свидетельствуют, что это вещество было выброшено задолго до вспышки сверхновой и позже было нагрето внешней ударной волной.

Синхротронное радиоизлучение релятивистских частиц в сильном магнитном поле является основным наблюдательным признаком для всего остатка. Область его локализации — прифронтовые области внешней и возвратной волн. Наблюдается синхротронное излучение и в рентгеновском диапазоне[7].

Теоретическое описание[править | править код]

Декомпозиция наблюдений[править | править код]

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ibc и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 1010 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и из непроэволюционировавших остались только звёзды с массой меньше солнечной. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, и, следовательно, нужен механизм продления жизни для звёзд масс 1-2M[6].

Отсутствие линий водорода в спектрах IaIax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика — 1M, преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывают на то, что во время выброса активно идут ядерные реакции. Всё это убеждает в том, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный[8].

Тяготение к спиральным рукавам сверхновых Ibc и II типов свидетельствует, что звездой-прародителем являются короткоживущие O-звёзды с массой 8-10M.

Термоядерный взрыв[править | править код]

Один из способов высвободить требуемое количество энергии — резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции — белые карлики. Однако сам по себе последний — устойчивая звезда, и всё может измениться только при приближении к пределу Чандрасекара. Это приводит к однозначному выводу, что термоядерный взрыв возможен только в кратных звёздных системах, скорее всего, в так называемых двойных звёздах.

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлечённого во взрыв вещества.

Первая[8]:

  • Второй компаньон — обычная звезда, с которого вещество перетекает на первый.
  • Второй компаньон — такой же белый карлик. Такой сценарий называет двойным вырождением.

Вторая:

  • Взрыв происходит при превышении предела Чандрасекара.
  • Взрыв происходит до него.

Общим во всех сценариях образования сверхновых Ia является то, что взрывающийся карлик скорее всего является углеродно-кислородным. Во взрывной волне горения, идущей от центра к поверхности, текут реакции[9]:

12C + 16O → 28Si + γ (Q=16,76 MeV),{displaystyle ^{12}C~+~^{16}O~rightarrow ~^{28}Si~+~gamma ~(Q=16,76~MeV),}Модель механизма гравитационного коллапсаВторой сценарий выделения необходимой энергии — это коллапс ядра звезды. Масса его должна быть в точности равна массе его остатка — нейтронной звезды, подставив типичные значения получаем[11]: Etot∼GM2R∼1053{displaystyle E_{tot}sim {frac {GM^{2}}{R}}sim 10^{53}}Структура и процессы нуклеосинтеза в предсверхновой и в следующее мгновение после вспышки для звезды 25M, масштаб не соблюдён[13].R-процесс[править | править код]r-проце́сс — это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n,γ) реакций; продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β-распада изотопа. Иными словами среднее время захвата n нейтронов τ(n,γ) должно быть: τ(n,γ)≈1nτβ,{displaystyle tau (n,gamma )approx {frac {1}{n}}tau _{beta },}Крабовидная туманность как остаток сверхновойSN 1054Интерес Гиппарха к неподвижным звёздам, возможно, был вдохновлён наблюдением сверхновой звезды (по Плинию). Наиболее ранняя запись, которая идентифицируется как запись наблюдений сверхновой SN 185, была сделана китайскими астрономами в 185 году нашей эры. Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054, породившая Крабовидную туманность. Сверхновые звёзды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска (после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи). С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках, начиная с наблюдений сверхновой S Андромеды в Туманности Андромеды в 1885 году. В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд. В 1960-х астрономы выяснили, что максимальная светимость взрывов сверхновых может быть использована в качестве стандартной свечи, следовательно, показателя астрономических расстояний. Сейчас сверхновые дают важную информацию о космологических расстояниях. Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется. Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений. Дата появления сверхновой Кассиопея A определялась по световому эху от туманности, в то время как возраст остатка сверхновой RX J0852.0−4622 оценивается по измерению температуры и γ-выбросов от распада титана-44. В 2009 году в антарктических льдах были обнаружены нитраты, соответствующие времени взрыва сверхновой. Остаток сверхновой SN 1987A, снимок телескопа «Хаббл», опубликованный 19 мая 1994 года[14]23 февраля 1987 года в Большом Магеллановом Облаке на расстоянии 168 тыс. световых лет от Земли вспыхнула сверхновая SN 1987A, самая близкая к Земле, наблюдавшаяся со времён изобретения телескопа. Впервые был зарегистрирован поток нейтрино от вспышки. Вспышка интенсивно изучалась с помощью астрономических спутников в ультрафиолетовом, рентгеновском и гамма-диапазонах. Остаток сверхновой исследовался с помощью ALMA, «Хаббла» и «Чандры». Ни нейтронная звезда, ни чёрная дыра, которые, по некоторым моделям, должны находиться на месте вспышки, пока не обнаружены. 22 января 2014 года в галактике M82, расположенной в созвездии Большая Медведица, вспыхнула сверхновая звезда SN 2014J. Галактика M82 находится на расстоянии 12 млн световых лет от нашей галактики и имеет видимую звёздную величину чуть менее 9. Данная сверхновая является самой близкой к Земле, начиная с 1987 года (SN 1987A). В апреле 2018 года английскими учёными из Саутгемптонского университетаБританского королевского астрономического общества на конференции EWASS (Европейская неделя астрономии и космических исследований) были озвучены данные[15] о возможном открытии в ходе своих наблюдений нового, до сих пор неизученного, третьего типа сверхновых. Во время этих наблюдений, в рамках программы Dark Energy Survey Supernova Programme (DES-SN), были зафиксированы 72 кратковременные вспышки с температурой от 10 до 30 тыс.°C и размерами от нескольких единиц до нескольких сотен а. е. Основная особенность этих космических событий заключается в их относительной кратковременности — всего несколько недель, а не несколько месяцев как у обычных сверхновых.[16]Наиболее известные сверхновые звёзды и их остатки[править | править код] Категория:Чёрные дыры This page is based on a Wikipedia article written by contributors (read/edit).Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses. —>

Их возникновение — это довольно редкое космическое явление. В среднем в доступных наблюдению просторах Вселенной вспыхивает три сверхновых в столетие. Каждая такая вспышка представляет собой гигантскую космическую катастрофу, при которой выделяется невероятно много энергии. По самой грубой оценке такое количество энергии могло бы образоваться при одновременном взрыве многих миллиардов водородных бомб.

Достаточно строгая теория вспышек сверхновых пока отсутствует, но ученые выдвинули любопытную гипотезу. Они предположили, на основании сложнейших расчетов, что в ходе альфа-синтеза элементов ядро звезды продолжает сжиматься. Температура в нем достигает фантастической цифры — 3 миллиарда градусов. При таких условиях в ядре значительно ускоряются различные ядерные реакции; в результате выделяется много энергии. Быстрое сжатие ядра влечет за собой столь же быстрое сжатие оболочки звезды.

Она тоже сильно разогревается, и протекающие в ней ядерные реакции, в свою очередь, сильно ускоряются. Таким образом буквально в считанные секунды выделяется громадное количество энергии. Это приводит к взрыву. Конечно, такие условия достигаются далеко не всегда, и потому сверхновые вспыхивают довольно редко.

Такова гипотеза. Насколько ученые правы в своих предположениях, покажет будущее. Но и настоящее привело исследователей к совершенно поразительным догадкам. Астрофизические методы позволили проследить, как уменьшается светимость сверхновых. И вот что выяснилось: в первые несколько дней после взрыва светимость уменьшается очень быстро, а затем это уменьшение (в течение 600 дней) замедляется. Причем каждые 55 дней светимость ослабевает ровно вдвое. С точки зрения математики, это уменьшение происходит по так называемому экспоненциальному закону. Хорошим примером такого закона является закон радиоактивного распада. Ученые высказали смелое предположение: выделение энергии после взрыва сверхновой обусловлено радиоактивным распадом изотопа какого-то элемента с периодом полураспада 55 дней.

Но какого изотопа и какого элемента? Эти поиски продолжались несколько лет. «Кандидатами» на роль подобных «генераторов» энергии выступили бериллий-7 и стронций-89. Они распадались наполовину как раз за 55 дней. Но выдержать экзамен им не довелось: расчеты показали, что энергия, выделяющаяся при их бета-распаде, слишком мала. А другие известные радиоактивные изотопы подобным периодом полураспада не обладали.

Новый претендент обнаружился среди элементов, которые на Земле не существуют. Он оказался представителем трансурановых элементов, синтезированных учеными искусственно. Имя претендента — калифорний, его порядковый номер — девяносто восемь. Его изотоп калифорний-254 удалось приготовить в количестве всего лишь около 30 миллиардных долей грамма. Но и этого поистине невесомого количества вполне хватило, чтобы измерить период полураспада изотопа. Он оказался равным 55 дням.

А отсюда возникла любопытная гипотеза: именно энергия распада калифорния-254 обеспечивает в течение двух лет необычайно высокую светимость сверхновой звезды. Распад калифорния происходит путем самопроизвольного деления его ядер; при таком виде распада ядро как бы раскалывается на два осколка — ядра элементов середины периодической системы.

Но каким образом синтезируется сам калифорний? Ученые и здесь дают логичное объяснение. В ходе сжатия ядра, предшествующего взрыву сверхновой, необычайно ускоряется ядерная реакция взаимодействия уже знакомого нам неона-21 с альфа-частицами. Следствием этого оказывается появление в течение довольно короткого промежутка времени чрезвычайно мощного потока нейтронов. Снова возникает процесс нейтронного захвата, но на сей раз уже быстрого. Ядра успевают поглотить очередные нейтроны раньше, чем подвернутся бета-распаду. Для этого процесса неустойчивость трансвисмутовых элементов уже не препятствие. Цепь превращений не порвется, и конец периодической таблицы тоже будет заполнен. При этом, видимо, образуются даже такие трансурановые элементы, которые в искусственных условиях еще не получены.

Ученые подсчитали, что при каждом взрыве сверхновой только калифорния-254 образуется фантастическое количество. Из такого количества металла можно было бы изготовить 20 шаров, каждый из которых весил бы столько, сколько наша Земля. Какова же дальнейшая судьба сверхновой? Она погибает довольно быстро. На месте ее вспышки остается лишь маленькая очень тусклая звездочка. Она отличается, правда, необычайно высокой плотностью вещества: наполненный им спичечный коробок весил бы десятки тонн. Такие звезды называют «белыми карликами». Что происходит с ними дальше, мы пока не знаем.

Материя, которая выбрасывается в мировое пространство, может сгуститься и образовать новые звезды; они начнут новый долгий путь развития. Ученые сделали пока лишь общие грубые мазки картины происхождения элементов, картины работы звезд — грандиозных фабрик атомов. Быть может, это сравнение в общем передает суть дела: художник набрасывает на холсте лишь первые контуры будущего произведения искусства. Уже ясен основной замысел, но многие, в том числе и существенные, детали еще приходится лишь угадывать.

Окончательное решение проблемы происхождения элементов потребует колоссального труда ученых различных специальностей. Вероятно, многое, что сейчас нам представляется несомненным, на самом деле окажется грубо приблизительным, а то и вовсе неверным. Наверное, ученым придется столкнуться с закономерностями, до сих пор нам неизвестными. Ведь для того чтобы разобраться в сложнейших процессах, протекающих во Вселенной, бесспорно, понадобится новый качественный скачок в развитии наших представлений о ней.

Автор: Д. Трифонов.

image

Еще несколько веков назад астрономы заметили, как блеск некоторых звезд в галактике неожиданно увеличивался более чем в тысячу раз. Редкое явление многократного увеличение свечения космического объекта ученые обозначили, как рождение сверхновой звезды. Это в некотором роде космический нонсенс, потому что в этот момент звезда не рождается, а прекращает свое существование.

Вспышка сверхновой звезды – это, по сути, взрыв звезды, сопровождающийся выделением колоссального количества энергии ~1050 эрг. Яркость свечения сверхновой, которая становится видна в любой точке Вселенной, возрастает течение нескольких суток. При этом каждую секунду выделяется такое количество энергии, которое может выработать Солнце за все время своего существования.

Взрыв сверхновой звезды как следствие эволюции космических объектов

Ученые-астрономы объясняют это явление эволюционными процессами, миллионы лет происходящими со всеми космическими объектами. Чтобы представить себе процесс появления сверхновой, нужно понять строение звезды (рисунок ниже).

image

Звезда – это огромный объект, обладающий колоссальной массой и, следовательно, такой же гравитацией. У звезды есть маленькое ядро, окруженное внешней оболочкой из газов, составляющих основную массу звезды. Гравитационные силы давят на оболочку и ядро, сжимая их с такой силой, что газовая оболочка раскаляется и, расширяясь, начинает давить изнутри, компенсируя силу гравитации. Паритет двух сил обусловливает стабильность звезды.

Под действием огромных температур в ядре начинается термоядерная реакция, превращающая водород в гелий. Выделяется еще больше тепла, излучение которого внутри звезды возрастает, но пока еще сдерживается гравитацией. А дальше начинается настоящая космическая алхимия: запасы водорода истощаются, гелий начинает превращаться в углерод, углерод – в кислород, кислород – в магний…Так посредством термоядерной реакции происходит синтез все более тяжелых элементов.

image

До момента появления железа все реакции идут с выделением тепла, но как только железо начинает перерождаться в следующие за ним элементы, реакция из экзотермической переходит в эндотермическую, то есть тепло перестает выделяться и начинает расходоваться. Баланс сил гравитации и теплового излучения нарушается, ядро сжимается в тысячи раз, и к центру звезды устремляются все внешние слои оболочки. Врезаясь в ядро со скоростью света, они отскакивают обратно, сталкиваясь друг с другом. Происходит взрыв внешних слоев, и вещество, из которого состоит звезда, разлетается со скоростью в несколько тысяч километров в секунду.

image

Процесс сопровождается такой яркой вспышкой, что ее можно увидеть даже невооруженным глазом, если сверхновая загорелась в ближайшей галактике. Затем свечение начинает угасать, и на месте взрыва образуется…А что же остается после взрыва сверхновой? Существует несколько вариантов развития событий: во-первых, остатком сверхновой может быть ядро из нейтронов, которое ученые называют нейтронной звездой, во-вторых, черная дыра, в-третьих, газовая туманность.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий