Что такое полиэтилен?

Полиэтилен: основные свойства и области применения

imageПолиэтилен (ПЭ) [–СН2-СН2–]n существует в двух основных модификациях, которые отличаются по структуре молекул полиэтилена, и, как следствие — по своим свойствам. Обе модификации получаются из этилена СН2=СН2. В одной из форм мономеры связаны в линейные цепи со степенью полимеризации (СП) обычно 5000 и более; в другой – разветвления из 4-6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150 0С) и давлениях (до 20 атм).

Оснвоные свойства и характеристики полиэтилена

Полиэтилен — термопластичный полимер, который:

  • непрозрачен в толстом слое;
  • кристаллизуется в диапазоне температур от -60 °С до -269 °С;
  • не смачивается водой;
  • при комнатной температуре не растворяется в органических растворителях;
  • при температуре выше 80 °С сначала набухает, а затем растворяется в ароматических углеводородах и их галогенопроизводных;
  • ПЭ устойчив к действию водных растворов солей, кислот, щелочей, но при температурах выше 60 °С серная и азотная кислоты быстро его разрушают;
  • кратковременная обработка ПЭ окислителем (например, хромовой смесью) приводит к окислению поверхности и смачиванию ее водой, полярными жидкостями и клеями. В этом случае изделия из ПЭ можно склеивать.

Газообразный этилен может быть полимеризован несколькими способами, в зависимости от этого полиэтилен разделяют на:

  • полиэтилен высокого давления (ПЭВД) или низкой плотности (ПЭНП);
  • полиэтилен низкого давления (ПЭНД) или высокой плотности (ПЭВП);
  • а также еще на линейный полиэтилен.

ПЭВД полимеризуется радикальным способом под давлением от 1000 до 3000 атмосфер и при температуре 180 градусов. Инициатором служит кислород. ПЭНД полимеризуется при давлении не менее 5 атмосфер и температуре 80 градусов при помощи катализаторов Циглера-Натта и органического растворителя.

Линейный полиэтилен (есть еще название полиэтилен среднего давления) получают при 30-40 атмосферах и температуре около 150 градусов. Такой полиэтилен является как бы «промежуточным» продуктом между ПЭНД и ПЭВД, что касается свойств и качеств. Не так давно начала применяться технология, где используются так называемые металлоценовые катализаторы. Смысл технологии заключается в том, что удается добиться более высокой молекулярной массы полимера, это, соответственно, увеличивает прочность изделия.

По своей структуре и свойствам (несмотря на то, что используется один и тот же мономер), ПЭВД, ПЭНД, линейный полиэтилен отличаются, и, соответственно, применяются для различных задач. ПЭВД мягкий материал, ПЭНД и линейный полиэтилен имеют жесткую структуру.

Также отличия проявляются в плотности, температуре плавления, твердости, и прочности.

Сравнительная характеристика полиэтилена высокого и низкого давления (ПЭВД и ПЭНД)

Тип полиэтилена Мол. масса Плотность, г/м3 Температура плавлени, °С Модуль упругости, МПа Vраст., МПа Относ. удлинение, %
Низкой плотности (высокого давления) 50-800 тыс. 0,913-0,914 102-105 100-200 7-17 100-800
Высокой плотности (низкого давления) 50 тыс.-3*10^6 0,919-0,973 125-137 400-1250 15-45 100-1200

Основной причиной различий свойств ПЭ, является разветвленность структуры его макромолекул: чем больше разветвлений в цепи, тем выше эластичность и меньше кристалличность полимера. Paзветвления затрудняют более плотную упаковку макромолекул и препятствуют достижению степени кристалличности 100 %; наряду с кристаллической фазой всегда имеется аморфная, содержащая недостаточно упорядоченные участки макромолекул. Соотношение этих фаз зависит от способа получения ПЭ и условии его кристаллизации. Оно определяет и свойства полимера. Пленки из ПЭНП в 5-10 раз более проницаемы, чем пленки из ПЭВП.

Механические показатели ПЭ возрастают с увеличением плотности (степени кристалличности) и молекулярной массы. В виде тонких пленок ПЭ (особенно полимер низкой плотности) обладает большей гибкостью и некоторой прозрачностью, а в виде листов приобретает большую жесткость и непрозрачность.

Полиэтилен устойчив к ударным нагрузкам. Среди наиболее важных свойств полиэтилена можно отметить морозостойкость. Изделия из полиэтилена могут эксплуатироваться при температурах от -70°С до 60 °С (ПЭНП) и до 100 °С (ПЭВП), некоторые марки сохраняют свои ценные свойства при температурах ниже -120°С.

Существенным недостатком полиэтилена является его быстрое старение. Срок старения увеличивают за счет специальных добавок — противостарителей (фенолы, амины, газовая сажа).

Электричские свойства полиэтилена характерны для неполярного полимера, поэтому он относится к высококачественным высокочастотным диэлектрикам. Диэлектрическая проницаемость и тангенс угла диэлектрических потерь мало изменяются с изменением частоты электрического поля, температуры в пределах от -80 °С до 100 °С и влажности. Однако остатки катализатора в ПЭВП повышают тангенс угла диэлектрических потерь, особенно при изменении температуры, что приводит к некоторому ухудшению изоляционных свойств.

Характеристики полиэтилена низкого давления (минимальные и максимальные значения для промышленных марок)

Показатели (при 23°С) Значения для ненаполненных марок
Плотность 0,94-0,97 г/см3
Теплостойкость по Вика (в жидкой среде, 50°С/ч, 50Н) 18-32 МПа
Предел текучести при растяжении (50 мм/мин) 10-19 МПа
Модуль упругости при растяжении (1 мм/мин) 610-1600 МПа
Относительное удлинение при растяжении (50мм/мин) 600-700 %
Ударная вязкость по Шарпи (образец с надрезом) 2-NB кДж/м2
Твердость при вдавливании шарика (358 Н, 30с) 38-59 МПа
Удельное поверхностное электрическое сопротивление 10^14-10^15 Ом
Водопоглощение (24 ч, влажность 50%) 0,1 %

Полиэтилен высокого давления

Полиэтилен ПНД (высокой плотности) применяется преимущественно для выпуска тары и упаковки. За рубежом примерно третья часть выпускаемого полимера используется для изготовления контейнеров выдувным формованием (емкости для пищевых продуктов, парфюмерно-косметических товаров, автомобильных и бытовых химикатов, топливных баков и бочек). При этом стоит отметить, что по сравнению с другими областями, опережающими темпами растет использование ПЭНД для производства упаковочных пленок. ПЭНД находит также применение в производстве труб и деталей трубопроводов, где используются такие достоинства материала как долговечность (срок службы — 50 лет), простота стыковой сварки, дешевизна (в среднем на 30% ниже по сравнению с металлическими трубами).

Другие обозначения: PE-LD, PEBD (французское и испанское обозначение).

Легкий эластичный кристаллизующийся материал с теплостойкостью без нагрузки до 60°С (для отдельных марок до 90 °С). Допускает охлаждение (различные марки в диапазоне от -45 до -120°С).

Свойства ПЭВД сильно зависят от плотности материала. Увеличение плотности приводит к повышению прочности, жесткости, твердости, химической стойкости. В то же время при увеличении плотности снижается ударопрочность при низких температурах, удлинение при разрыве, трещиностойкость, проницаемость для газов и паров. Склонен к растрескиванию при нагружении. Не отличается стабильностью размеров.

  • Обладает отличными диэлектрическими характеристиками.
  • Имеет очень высокую химическую стойкость.
  • Не стоек к жирам, маслам.
  • Не стоек к УФ-излучению.
  • Отличается повышенной радиационной стойкостью.
  • Биологически инертен.
  • Легко перерабатывается.

Характеристики полиэтилена высокого давления (минимальные и максимальные значения для промышленных марок)

Показатели (при 23°С) Значения для ненаполненных марок
Плотность 0,91-0,925 г/см3
Предел текучести при растяжении (50 мм/мин) 8-13 МПа
Модуль упругости при растяжении (1 мм/мин) 118-350 МПа
Относительное удлинение при растяжении (50 мм/мин) 100-150 %
Ударная вязкость по Шарпи (образец с надрезом) NB
Удельное поверхностное электрическое сопротивление 1014-1015 Ом
Водопоглощение (24 ч, влажность 50%) 0,01 %

Структура потребления полиэтилена в различных секторах промышленности, %

Пленки и листы 60-70
Изоляция электрических проводов 5-9
Трубы и профилированные изделия 1-3
Изделия, полученные литьем под давлением 10-12
Изделия, полученные выдуванием 1-5
Экструзионные изделия 5-10
Прочие изделия 1-8

Изоляция электрических проводов из полиэтилена.

Высокие диэлектрические свойства полиэтилена и его смесей с полиизобутиленом, малая проницаемость для паров воды позволяют широко использовать его для изоляции электропроводов и изготовления кабелей, применяемых в различных средствах связи (телефонной, телеграфной), сигнальных устройствах, системах диспетчерского телеуправления, высокочастотных установках, для обмотки проводов двигателей, работающих в воде, а также для изоляции подводных и коаксиальных кабелей.

Кабель с изоляцией из полиэтилена имеет преимущества по сравнению с каучуковой изоляцией. Он легок, более гибок и обладает большей электрической прочностью. Провод, покрытый тонким слоем полиэтилена, может иметь верхний слой из пластифицированного поливинилхлорида, образующего хорошую механическую защиту от повреждений.

В производстве кабелей находит применение ПЭНП, сшитый небольшими количествами (1-3 %) органических перекисей или облученный быстрыми электронами.

Пленки и листы из полиэтилена.

Пленки и листы могут быть изготовлены из ПЭ любой плотности. При получении тонких и эластичных пленок более широко применяется ПЭНП. Листы ПЭ-пленки изготовляются двумя методами: экструзией расплавленного полимера через кольцевую щель с последующим раздувом или экструзией через плоскую щель с последующей вытяжкой. Они выпускаются толщиной 0,03-0,30 мм, шириной до 1400 мм (в некоторых случаях до 10 м) и длиной до 300 м.

Кроме тонких пленок, выпускается полиэтилен в листах, толщиной 1-6 мм и шириной до 1400 мм, Их применяют в качестве футеровочного и электроизоляционного материала и перерабатывают в изделия технического к бытового назначения методом вакуумного формования.

Большая часть продукции из ПЭНП служит упаковочным материалом, конкурируя с другими пленками (целлофановой, поливинилхлоридной, поливинилиденхлоридной, поливинилфторидной, полиэтилентерефталатнсй, из поливинилового спирта и др.), меньшая часть используется для изготовления различных изделий (сумок, мешков, облицовки для ящиков, коробок и других видов тары).

Широко применяются пленки для упаковки замороженного мяса и птицы, при изготовлении аэростатов и баллонов для проведения метеорологических и других исследований верхних слоев атмосферы, защиты от коррозии магистральных нефте- и газопроводов. В сельском хозяйстве прозрачная пленка используется для замены стекла в теплицах и парниках. Черная пленка служит для покрытия почвы в целях задержания тепла при выращивании овощей, плодово-ягодных и бобовых культур, а также для выстилания силосных ям, дна водоемов и каналов. Все больше применяется полиэтиленовая пленка в качестве материала для крыш и стен при сооружении помещений для хранения урожая, сельскохозяйственных машин и другого оборудования.

Из полиэтиленовой пленки изготовляют предметы домашнего обихода: плащи, скатерти, гардины, салфетки, передники, косынки и т. п. Пленка может быть нанесена с одной стороны на различные материалы: бумагу, ткань, целлофан, металлическую фольгу.

Армированная полиэтиленовая пленка отличается большей прочностью, чем обычная пленка такой же толщины. Материал состоит из двух пленок, между которыми находятся армирующие нити из синтетических или природных волокон или редкая стеклянная ткань.

Из очень тонких армированных пленок изготовляют скатерти, а также пленки для теплиц; из более толстых пленок — мешки и упаковочный материал. Армированная пленка, упрочненная редкой стеклянной тканью, может быть применена для изготовления защитной одежды и использована в качестве обкладочного материала для различных емкостей.

На основе пленок из ПЭ могут быть изготовлены липкие (клеящие) пленки или ленты, пригодные для ремонта кабельных линий вы¬сокочастотной связи и для защиты стальных подземных трубопроводов от коррозии. Полиэтиленовые пленки и ленты с липким слоем содержат на одной стороне слой из низкомолекулярного полиизобутилена, иногда в смеси с бутилкаучуком. Выпускаются они толщиной 65-96 мкм, шириной 80-I50 мм.

ПЭНП и ПЭВП применяют и для защиты металлических изделий от коррозии. Защитный слой наносится методами газопламенного и вихревого напыления.

Трубы и трубная продукция из полиэтилена

Из всех видов пластмасс ПЭ нашел наибольшее применение для изготовления экструзии и центробежного литья труб, характеризующихся легкостью, коррозионной стойкостью, незначительным сопротивлением движению жидкости, простотой монтажа, гибкостью, морозостойкостью, легкостью сварки.

Непрерывным методом выпускаются трубы любой длины с внутренним диаметром 6-300 мм при толщине стенок 1,5-10 мм. Полиэтиленовые трубы небольшого диаметра наматываются на барабаны. Литьем под давлением изготовляют арматуру к трубам, которая включает коленчатые трубы, согнутые под углом 45 и 90 град; тройники, муфты, крестовины, патрубки. Трубы большого диаметра (до 1600 мм) с толщиной стенок до 25 мм получают методом центробежного литья.

Полиэтиленовые трубы вследствие их химической стойкости и эластичности применяются для транспортировки воды, растворов солей и щелочей, кислот, различных жидкостей и газов в химической промышленности, для сооружения внутренней и внешней водопроводной сети, в ирригационных системах и дождевальных установках.

Трубы из ПЭНП могут работать при температурах до 60°С, а из ПЭВП — до 100°С. Такие трубы не разрушаются при низких температурах (до – 60°С) и при замерзании воды; они не подвержены почвенной коррозии.

Формование и литьевые изделия из полиэтилена.

Из полиэтиленовых листов, полученных экструзией или прессованием, можно изготовить различные изделия штампованием, изгибанием по шаблону или вакуумформованием. Крупногабаритные изделия (лодки, ванны, баки и т. п.) также могут быть изготовлены из порошка полиэтилена путем его спекания на нагретой форме. Отдельные части изделий могут быть сварены при помощи струи горячего воздуха, нагретого до 250 0С. Формованием и сваркой можно изготовить вентили, колпаки, конейнеры, части вентиляторов и насосов для кислот, мешалки, фильтры, различные емкости, ведра и т. п.

Одним из основных методов переработки ПЭ в изделия является метод литья под давлением. Большое распространение в фармацевтической и химической промышленности получили бутылки из полиэтилена объемом от 25 до 5000 мл, а также посуда, игрушки, электротехнические изделия, решетчатые корзины и ящики.

Выбор того или иного технологического процесса определяется в первую очередь необходимостью получения марочного ассортимента с определенным комплексом свойств. Суспензионный метод целесообразен для производства полиэтилена трубных марок и марок полиэтилена, предназначенного для переработки экструзионным методом, а также для производства высокомолекулярного полиэтилена. С привлечением растворных технологий получают ЛПЭНД, для высококачественных упаковочных пленок, марки полиэтилена для изготовления изделий методами литья и ротационного формования. Газофазным методом производят марочный ассортимент полиэтилена, предназначенный для изготовления товаров народного потребления.

Советы по уходу за газоном

«Все на свете из пластмассы, и вокруг пластмассовая жизнь», — пела группа «Сплин». И действительно, из пластмассы делают великое множество вещей. Однако и пластмасс существует очень много. У каждого типа — свои особенности и преимущества.

ПЭТ (полиэтилентерефталат)

image

ПЭТ — самый распространенный материал для производства пластиковых бутылок. Минеральная вода, газировка и другие освежающие напитки, как правило, содержатся именно в ПЭТ-бутылках.

Основное преимущество ПЭТ в том, что это превосходный барьер на пути влаги и жидкости. Стекло, конечно, в этом плане вне конкуренции, но оно гораздо более хрупкое и тяжелое. Пол-литровая бутылка ПЭТ в 10 раз легче бутылки из стекла. К тому же благодаря тому, что ПЭТ дешев и ударопрочен, производители стали продавать свои напитки в бутылках большого объема. Это выгодно и покупателям, и продавцам.

Впервые ПЭТ выделили британские химики — в 1941 году. После войны многие страны научились производить этот ценный синтетический материал в своих лабораториях. В СССР он получил красивое название лавсан, что, впрочем, означает вовсе не солнце любви, а Лабораторию Института высокомолекулярных соединений Академии Наук.

Первоначально о бутылках никто не думал. Из ПЭТ производили синтетические волокна, например полиэстер. В 1950-х годах из него научились делать пленку — в частности, для фотоаппаратов и кинокамер. Первая ПЭТ-бутылка сошла с конвейера в 1973 году. А уже в 1977 году бутылки стали перерабатывать. Оказалось, что они прекрасно поддаются переработке, и из них можно делать новые бутылки, одежду, хозяйственные емкости.

ПНД (полиэтилен низкого давления) и ПВД (полиэтилен высокого давления) 

Считается, что впервые полиэтилен был получен на исходе 19-го века. Немецкий химик Ганс фон Пехманн в 1898 году нагрел диазометан и нашел в пробирке белый осадок, похожий на воск. Его коллеги описали вещество, но практического применения до 1930-х гг. это открытие не имело.

В 1933 году химики Эрик Фосет и Реджинальд Гибсон из британской компании ICI случайно смешали два вещества и нагрели его под высоким давлением и, вслед за фон Пехманном, получили новую воскообразную субстанцию. Через два года еще один химик из ICI установил, как можно повторить этот опыт, и уже в 1939 году началось промышленное производство полиэтилена.

ПВД изготавливается при высоком давлении, а ПНД — при низком. Это определяет их свойства. ПНД тверже, но менее прозрачен. К плюсам ПНД можно отнести его низкую водопроницаемость, высокую устойчивость к маслам, бензину и другим элементам. Это долговечная и прочная пластмасса. Из нее изготавливают трубы, посуду, крышки, фляги, ведра и другие хозяйственные емкости.

ПВД, напротив, отличается гибкостью и эластичностью. Это не самая прочная пластмасса, зато совершенно безопасная. При контакте с пищевыми продуктами она не выделяет вредных веществ. Из ПВД делают пакеты, пищевую и другие виды пленок, брезент. Также ПВД используется в производстве бутылок, канистр и других емкостей. Еще одно важное достоинство ПВД — он не боится низкой температуры и не становится хрупким на холоде.

ПВХ (поливинилхлорид)

ПВХ широко применяется в ремонте и строительстве. Из ПВХ делают вагонку, сайдинг, натяжные потолки, пластиковые окна. Но этим сфера применения ПВХ не исчерпывается. В каждом современном автомобиле — несколько килограммов ПВХ. Покрытия, приборные панели, подлокотники, ручки, держатели стаканов и многие другие детали изготовлены из него. ПВХ ценят и в медицине, и в канцелярии, из него делают пластиковые карточки, игрушки. Словом, это универсальный материал.

ПВХ был открыт французским химиком Анри Реньо. Как-то раз он оставил пробирку с винилхлоридом на солнечном свету и забыл про нее несколько дней. В пробирке образовался белый порошок. Впрочем, почти на целый век про это вещество забыли. Промышленное производство ПВХ началось только в 1913 году, и оно связано с именем американского инженера Фрица Клатте. Бум производства ПВХ начался в 1930-е годы. Германия, США, Великобритания начали на полную мощность производить новый материал. С чем же связана его популярность?

ПВХ устойчив к химическим соединениям. Он долговечен, не боится ни влаги, ни песка, ни солнца. При этом современный ПВХ эстетично выглядит. Однако в среде экологов к ПВХ относятся настороженно, ведь при его производстве активно применяется хлор. К тому же ПВХ сложно утилизировать: при сжигании он выделяет опасные для здоровья канцерогены.

ПП (Полипропилен)

История полипропилена началась в 1950-х годах, когда его получили химики Джулио Натта и Карл Циглер. За свое открытие они удостоились Нобелевской премии. Сегодня этот пластик по распространенности уступает только полиэтилену. Из полипропилена делают упаковочную тару, пленку, волокна. Из него также изготавливают одежду — например, болониевые куртки. Само название «болонья» произошло от одноименного города, где Джулио Натта открыл этот материал.

Полипропилен — экстремальный пластик. Он не боится ни высоких температур, ни изгибов, ни коррозии, ни растворителей. Не тонет в воде. Безвреден. Зато от мороза и солнечных лучей его лучше беречь. Полипропилен хорошо перерабатывается, его дробят на гранулы, после чего вновь используют в производстве.

ПС (Полистирол)

Полистирол впервые был выделен в 1911 году, хотя стирол, на основе которого он производится, был известен еще в 19-м веке. Это жесткий, но относительно хрупкий материал. Он устойчив к влаге. Его легко обрабатывать. Сравнительно дешев. Из полистирола делают массу вещей в различных сферах: потолочные плитки, корпуса телевизоров, чашки Петри, игрушки для детей.

Впрочем, полистирол применяется не только в мирных целях. Это вязкое вещество сложно потушить, поэтому оно стал одним из составляющих напалма. А вот в быту полистирол безвреден, однако при его сжигании выделяются вредные канцерогены, поэтому лучше всего полистирол перерабатывать.

Знаки перерабатываемого пластика

Каждый перерабатываемый тип пластика обозначается определенным знаком. Наверняка вы не раз видели такие значки на упаковке. Если же пластик не подпадает ни под один из перечисленных видов (что редкость!), его обозначают знаком «Другие виды пластика» — вот таким. 

Следующая статья

Чудеса из бутылки: как старый пластик превращается в новые вещи

Если пластик правильно утилизировать и переработать, он начинает жить заново. В частности, из выброшенных пластиковых бутылок делают массу новых вещей, которые нас окружают или будут окружать в ближайшем будущем. В 1990-е годы, когда дефицит начал отступать, на полки магазинов хлынули невидан…

ВК ПОЛИМЕР

Емкостные конструкцииОчистка сточных вод —> Полиэтиленовые емкостиПолипропиленовые емкостиЕмкости из ПВХЕмкости для кислот и щелочейЕмкости с коническим дномГальванические ванныЕмкости для перевозки кислотВертикальные емкостиРезервуары для водыСептикиПрямоугольные в стальном каркасеЕмкости для перевозки живой рыбы
  • Полиэтилен (РЕ) получают полимеризацией газа этилена при высоком и низком давлении. Полиэтилен, получаемый при высоком давлении (150-300МПа, 150-320ЛљС), называется полиэтилен высокого давления PEBD (или низкой плотности LDPE), получают его полимеризацией этилена в автоклавном или трубчатом реакторе. При низком давлении (<4МПа, 80ЛљС) на комплексных металлоорганических катализаторах в суспензии или газовой фазе получают полиэтилен низкого давления <span>PEHD (или высокой плотности HDPE). Различными способами получают и другие модификации полиэтилена (линейный, высокомолекулярный, сверхвысокомолекулярный и т.д.), отличающиеся более высокими эксплуатационными характеристиками.На практике применение различных видов полиэтилена обусловлено их свойствами. Так, полиэтилен высокого давления имеет большую мягкость и пластичность, чем низкого давления, поэтому применяют его в основном в ротационном формовании или литье, например, для производства упаковочного материала. Также ротационным формованием изготавливают емкости небольшого объема. Полиэтилен низкого давления HDPE более прочный материал. Именно HDPE мы применяем на нашем предприятии для изготовления резервуаров объемом до 250м3.

    Физические свойства полиэтилена ПНД (HDPE).

    Полиэтилен HDPE представляет собой твердый материал, с воскообразной на ощупь поверхностью. HDPE обладает высокой вязкостью, гибкостью, растяжимостью и эластичностью. Имеет малую плотность — 0,95 — 0,96 г/см3, поэтому материал легче воды. Отдельные марки не теряют своих свойств в интервале температур от -250 до +90 В°С, например марка PolystoneM производства Rochling. Материал также обладает хорошими диэлектрическими свойствами, а стойкость к радиоактивным излучениям одна из самых высоких среди полимерных материалов. Полиэтилен физиологически безвреден и годен к контакту с пищевыми продуктами.В таблице приведены некоторые характеристики ПНД марок PE-80 и PE-100 производства Simona, Германия.

    PE-80 PE-100

    Плотность, г/см3

    0,955 0,960

    Напряжение при растяжении, МПа

    22 23

    Температурный диапазон применения, В°С

    -50 — 80 -50 — 80

    Удлинение при разрыве, %

    300 600

    Модуль упругости при растяжении, МПа

    800 900

    Ударная вязкость, кДж/м2

    12 12

    Теплопроводность, В/(мВ·В°С)

    44В·10-2 44В·10-2

    Удельная теплоемкость при 20-25 В°С, Дж/кгВ·В°С

    1880 1880

    Химические свойства полиэтилена HDPE (ПНД)

    Полиэтилен устойчив к органическим, некоторым неорганическим кислотам, щелочам, растворами солей, спиртосодержащим продуктам, минеральным и органическим маслам. Также как полипропилен, полиэтилен не стоек к контакту с сильными неорганическими окислителями (HNO3, H2SO4), галогенами — даже при незначительных нагрузках происходит растрескивание материала. При длительном контакте с ароматическими соединениями и галогенированными углеводородами происходит набухание материала. В принципе химическая стойкость полиэтилена в том же температурном диапазоне схожа со стойкостью полипропилена.Обобщенная устойчивость ПНД к химическому воздействию приведена в таблице химической стойкости. Для определения устойчивости полиэтилена к контакту к различными химическими растворами при температурных, механических и прочих нагрузках наши специалисты проведут дополнительные расчеты. Для расчета химической устойчивости и подбора материала обратитесь, пожалуйста, к нашим специалистам в разделе Сделать заказ или через форму обратной связи.Таблица химической стойкости полиэтилена.По горючести ПНД, также как полипропилен, отнесен, согласно стандарту DIN 4102, к классу В: В1 — трудно возгораемые и В2 — нормально возгораемые. Температура самовоспламенения около 350В°С.По существу в химическом составе полиэтилена содержится только углерод и водород. Поэтому практически единственными веществами, выделяющимися при его горении, являются углекислый газ, монооксид углерода (угарный газ), вода и незначительное количество сажи. Соотношение углекислого и угарного газа зависит от температуры, вентиляции и доступа кислорода при горении. Прекращение горения производится водой.Для повышения некоторых характеристик HDPE, таких как электропроводность, стойкость к ультрафиолетовому излучению, в его состав добавляют определенные присадки (стабилизаторы).Отличие ПНД от других термопластов состоит в способности сохранять свои свойства при больших отрицательных температурах. Этим объясняется более широкое применение полиэтилена при изготовлении резервуаров, чем полипропилена.

    • Краснодарский край, г. Геленджик, ул. Тельмана 137

    2009 ВК Полимер.

    Что собой представляет полиэтилен? Какие у него характеристики? Как происходит получение полиэтилена? Это весьма интересные вопросы, которые обязательно будут рассмотрены в этой статье.

    image

    Общая информация

    Полиэтилен – это химическое вещество, которое представляет собой цепочку атомов углерода, к каждому из них при этом присоединено две молекулы водорода. Несмотря на наличие одинакового состава, всё же существует две модификации. Отличаются они по своей структуре и, соответственно, свойствам. Первая представляется собой линейную цепь, в которой степень полимеризации превышает показатель в пять тысяч. Вторая структура – это разветвление из 4-6 атомов углерода, что присоединяются к основной цепи произвольным способом. Как же в общих чертах получается линейный полиэтилен? Это достигается благодаря использованию особых катализаторов, что влияют на полиолефины при умеренной температуре (до 150 градусов по Цельсию) и давлении (до 20 атмосфер). Но что же он собой представляет? Мы знаем его химические свойства, а какие тогда физические?

    Что он собой представляет?

    Полиэтилен – это термопластичный полимер, в котором процесс кристаллизации осуществляется при температуре меньше минус 60 градусов по Цельсию. Он не прозрачен в толстом слое, не смачивается водой, органические растворители при комнатной температуре на него не влияют. Если температура превысит плюс 80 градусов по Цельсию, то сначала осуществляется набухание, а потом распад на ароматические углеводороды и галогенопроизводные. Полиэтилен – это вещество, которое успешно противостоит негативному влиянию растворов кислот, солей и щелочей. Но если температура превышает 60 градусов тепла по Цельсию, то его довольно быстро могут разрушить азотная и серная кислоты. Для склейки изделий из полиэтилена они могут обрабатываться окислителями, с последующим нанесением необходимых веществ.

    image

    Как осуществляется получение полиэтилена?

    Для этого используют:

    • Метод высокого давления (низкой плотности). Полиэтилен создаётся при высоком давлении, которое находится в диапазоне от 1 000 до 3 000 атмосфер при температуре в 180 градусов тепла по Цельсию. В качестве инициатора выступает кислород.
    • Метод низкого давления (высокой плотности). В этом случае полиэтилен создаётся при давлении, которое составляет не меньше пяти атмосфер и температуры в 80 градусов Цельсия с использованием органического растворителя и катализаторов Циглера-Натта.
    • И отдельно находится цикл производства линейного полиэтилена, о котором говорилось выше. Он является промежуточным между вторым и первым пунктами.

    Следует отметить, что это не единственные технологии, которые применяются. Так, довольно распространённым ещё является и использование металлоценовых катализаторов. Смысл данной технологии заключается в том, что посредством неё добиваются значительной массы полимера, увеличивая при этом прочность изделия. В зависимости от того, какая структура и свойства необходимы при использовании одного мономера, и происходит выбор метода получения. Также на это могут повлиять требования к температуре плавления, прочности, твердости и плотности.

    Почему же наблюдается сильная разница?

    Основная причина различия свойств – это разветвленность макромолекул. Так, чем она больше, тем меньше кристалличность и выше эластичность полимера. Почему это важно? Дело в том, что механические показатели полиэтилена растут вместе с его плотностью и молекулярной массой. Давайте рассмотрим небольшой пример. Полиэтилен листовой обладает значительной жесткостью и не прозрачностью. Но если используется метод низкой плотности, то полученный материал будет обладать относительно неплохой гибкостью и относительной видимостью через него. Почему же выпускается такой различный ассортимент? Из-за отличий условий эксплуатации. Так, полиэтилен неплохо справляется с ударными нагрузками. Также он хорошо переносит морозы. Диапазон рабочей температуры этого материала – от -70 до +60 по Цельсию. Хотя отдельные марки приспособлены и для несколько иного градиента – от -120 и до +100. На это влияет плотность полиэтилена и его структура на молекулярном уровне.

    Специфика материала

    Следует отметить один существенный недостаток – быстрое старение полиэтилена. Но это дело поправимое. Увеличение срока службы достигается благодаря специальным добавкам-противостарителям, в роли которых может выступать газовая сажа, фенолы или же амины. Также следует отметить и то, что материал низкой плотности более вязок, благодаря чему он легче может быть переработан в изделия. Нельзя не упомянуть и электрические свойства. Полиэтилен благодаря тому, что он неполярный полимер, является высококачественным высокочастотным диэлектриком. Благодаря этому проницаемость и тангенс угла потерь слабо меняются от изменений влажности, температуры (в диапазоне от -80 до +100) и частоты электрического поля. Тут следует отметить одну особенность. Так, если в полиэтилене имеются остатки катализатора, то это способствует повышению тангенса угла диэлектрических потерь, что ведёт к некоторому ухудшению изоляционный свойств. Что ж, сейчас нами была рассмотрена общая ситуация. А теперь давайте уделим внимание конкретике.

    Что собой представляет полиэтилен низкого давления?

    Это эластичный лёгкий кристаллизующийся материал, теплостойкость которого находится в диапазоне от -80 до +100 градусов по Цельсию. Обладает блестящей поверхностью. Стеклование начинается при -20. А плавление — в диапазоне 120-135. Характерным является хорошая ударная прочность и теплостойкость. Плотность полиэтилена значительно влияет на получаемые свойства. Так, вместе с нею растёт прочность, жесткость, твердость и химическая стойкость. Но одновременно падает склонность к растяжению и проницаемость для паров и газов. Нельзя не отметить ползучесть, что наблюдается при длительной нагрузке. Такой полиэтилен биологически инертен, и его легко можно переработать. Что весьма полезно в современных условиях. Говоря про применение полиэтилена, необходимо отметить, что его используют для изготовления упаковок и тары. Так, примерно треть продукции идёт на то, чтобы создать контейнеры выдувного формирования, что используются в пищевой промышленности, косметике, автомобильной, бытовой, энергетической областях и пленок. Но встретить его можно и при создании труб и деталей трубопроводов. Важным преимуществом такого материала является его долговечность, дешевизна и простота сварки.

    image

    Полиэтилен высокого давления

    Это эластичный лёгкий кристаллизующийся материал, теплостойкость которого (без нагрузки) находится в диапазоне от -120 до +90 градусов по Цельсию. Свойства также сильно зависят от плотности полученного материала. Так происходит повышение прочности, твердости, жесткости и химической стойкости. Вместе с этим толщина полиэтилена негативно сказывается на ударопрочности, удлинении, стойкости к трещинам и проницаемости для паров и газов. К тому же, он не отличается стабильностью размеров и заметно негативное влияние при относительно небольших нагрузках. Следует отметить действительно высокую химическую стойкость и отличные диэлектрические характеристики. Из негатива – на такой полиэтилен плохо влияют жиры, масла и ультрафиолетовое излучение. Биологически инертен, можно легко переработать. Также ещё можно охарактеризовать и как стойкого к радиации. Применение полиэтилена высокого давления больше всего можно встретить при создании технических, пищевых и сельскохозяйственных пленок. Хотя, конечно, это не единственный вариант.

    Линейный полиэтилен

    Он представляет собой эластичный кристаллизующийся материал. Может выдерживать температуру до 118 градусов тепла по Цельсию. Также важным преимуществом данного материала является его стойкость к растрескиванию, теплостойкость и ударная прочность. Применяется для изготовления упаковок, емкостей и контейнеров. Что же предлагает этот полиэтилен? Характеристики данного материала весьма высоки по сравнению с аналогом, получаемым способом низкого давления. Поэтому у него довольно неплохие свойства. Но всё же, как правило, он не может равняться с полиэтиленом высокого давления.

    image

    Как может быть представлен материал?

    Итак, мы уже рассмотрели основные виды полиэтилена. В каком же виде он создаётся? Наиболее популярные – это полиэтилен листовой и пленочный. Эти формы могут быть изготовлены из материала любой плотности. Хотя всё же есть и определённые предпочтения. Так, для получения эластичных и тонких пленок широко используют подход низкого давления. Ширина полученного материала, как правило, достигает 1400 миллиметров, а длина – 300 метров. Линейный и полиэтилен высокого давления более жесткие, поэтому их используют для конструкций, которые не должны подвергаться влиянию: те же листы, трубы, формированные и литьевые изделия и прочее.

    Заключение

    И напоследок нельзя не упомянуть регулирующие документы, согласно которым и производится полиэтилен. ГОСТ 16338-85 отвечает за продукцию, которая создаётся при низком давлении. Он действует ещё с 1985 года. ГОСТ 16337-77 регламентирует вопросы, связанные с полиэтиленом высокого давления. Он ещё более старый и датируется 1977 годом. Эти нормативные документы содержат в себе информацию о требованиях к материалам, из которых и изготавливаются плёнки, упаковки и другая различная продукция. Причем следует отметить широкий диапазон применения получаемой продукции и её видового разнообразия. Так, к примеру, весьма распространены армированные полиэтиленовые пленки. Их особенностью является то, что при одинаковой толщине они на голову выше по своим свойствам, чем обычные образцы продукции. Из тех же самых армированных полиэтиленовых пленок делают скатерти, мешки и много иных полезных вещей. А их свойства получаются благодаря внедрению специальных нитей из природных или синтетических волокон.

    Оцените статью
    Рейтинг автора
    5
    Материал подготовил
    Илья Коршунов
    Наш эксперт
    Написано статей
    134
    А как считаете Вы?
    Напишите в комментариях, что вы думаете – согласны
    ли со статьей или есть что добавить?
    Добавить комментарий