Что такое окружность как геометрическая фигура: основные свойства и характеристики

В жизни человек часто сталкивается с понятием окружность. Все едят с круглых тарелок, грызут круглые яблоки, катаются на велосипеде или ездят на транспорте с круглыми колесами и просто видят круглое солнце.

image

Содержание

Понятия радиус и диаметр

Немногие задумываются, что на самом деле круг – очень сложная замкнутая фигура. Она состоит из главной точки (так называемый центр), а также из множества точек, которые идут от этого центра. Расстояние от центральной точки до окружности называют радиус. Чаще всего это понятие обозначается букой «R».

Если соединить две противоположные друг другу точки окружности и провести между ними линию, то она и будет диаметром. Диаметр обозначают символом «Ø». То есть радиус всегда будет равен половине диаметра.

Как использовать эти понятия в жизни

Вообще с этими понятиями знакомы практически все, кто учил геометрию в школе. Взрослые тоже часто сталкиваются с ними, когда помогают детям делать домашнее задание или просто проверяют его.

Также эти понятия очень часто используются в черчении, к примеру, в архитектуре, когда планируется сделать круглое окно, арку или другую круглую деталь.

В ландшафте тоже не обойтись без радиуса и диаметра, ведь именно они позволят поделить круг на несколько частей, создав яркие цветочные композиции. Последние будут не только радовать глаза, но и помогут отвлечь внимание гостей от грядок с овощами.

Во время конструирования одежды тоже часто встречаются понятия радиус и диаметр. Например, когда шьют шляпы, юбки или круглые накладные воротники.

Понятия диметр и радиус часто используются в программировании и создании сайтов. К примеру, многие создают программы для коррекции кругов (последние используются в разных сферах).

Также может быть интересно:  Виниловые обои — что это такое, каковы их преимущества и проблемы

Важно обратить внимание, что понятия диаметр и радиус касаются не только круга. Круг – это фигура, которая лежит на определенной плоскости. Но в геометрии фигуры не всегда лежат на плоскости, некоторые находятся в пространстве. И понятия круг в пространстве вообще не существует, в нем используются объемные фигуры, например, эллипс, цилиндр, конус или шар. Для вычисления объема всех этих фигур тоже понадобится определять диаметр и радиус.

Другие понятия

Существует еще несколько понятий, которые могут пригодиться тем, кто работает с диаметром или радиусом:

  • Дуга. Это кривая линия, которая является частью окружности. Ее измеряют в градусах. Сумма всех дуг составляет 360 градусов.
  • Хорда. В отличие от кривой дуги это прямой отрезок, который соединяет две точки на окружности. Хорда отличается и диаметра – последний всегда равен двум радиусам и всегда проходит через центральную точку круга. Хорда же может быть длиннее или короче радиуса и никогда не проходит через центральную точку на круге.
  • Сектор. Простыми словами, круг – это торт или пирог. Сектор же это треугольный кусок, который вырезается из этого пирога или торта.
  • Касательная. Это линия, которая проходит рядом с кругом так, что соприкасается только с одной точкой на окружности.

Все перечисленные выше понятия пригодятся не только тем, кто учит геометрию, но и тем, кто имеет дело с кругами в других сферах. В математике существует несколько формул, которые помогут выяснить величину любого из описанных выше понятий по заданным параметрам.

Поделись знанием: Материал из Википедии — свободной энциклопедии Перейти к: навигация, поиск

Хо́рда (от греч.χορδή — струна) в планиметрии — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы, гиперболы).

Хорда находится на секущей прямой — прямой линии, пересекающей кривую в двух или более точках. Плоская фигура, заключённая между кривой и её хордой называется сегментом, а часть кривой, находящаяся между двумя крайними точками хорды называется дугой. В случае с замкнутыми кривыми (например, окружностью, эллипсом) хорда образует пару дуг с одними и теми же крайними точками по разные стороны хорды. Хорда, проходящая через центр окружности, является её диаметром. Диаметр — самая длинная хорда в окружности.

Свойства хорд окружности

Хорда и расстояние до центра окружности

  • Если расстояния от центра окружности до хорд равны, то эти хорды равны.
  • Если хорды равны, то расстояния от центра окружности до этих хорд равны.
  • Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше.
  • Если расстояние от центра окружности до хорды меньше, то эта хорда больше. Если расстояние от центра окружности до хорды больше, то эта хорда меньше.
  • Наибольшая возможная хорда является диаметром.
  • Наименьшая возможная хорда является точкой.
  • Если хорда проходит через центр окружности, то эта хорда является диаметром.
  • Если расстояние от центра окружности до хорды равно радиусу, то эта хорда является точкой.
  • Серединный перпендикуляр к хорде проходит через центр окружности.

Хорда и диаметр

  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде.
  • Если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам.
  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
  • Если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу.
  • Если диаметр перпендикулярен хорде, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
  • Если диаметр делит дугу пополам, то этот диаметр перпендикулярен хорде, стягивающей эту дугу.

Хорда и радиус

  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде.
  • Если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам.
  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
  • Если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
  • Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
  • Если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.

Хорда и вписанный угол

  • Если вписанные углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то эти углы равны.
  • Если пара вписанных углов опирается на одну и ту же хорду и вершины этих углов лежат по разные стороны этой хорды, то сумма этих углов равна 180°.
  • Если вписанный и центральный углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то вписанный угол равен половине центрального угла.
  • Если вписанный угол опирается на диаметр, то этот угол является прямым.

Хорда и центральный угол

  • Если хорды стягивают равные центральные углы, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные центральные углы.
  • Большая хорда стягивает больший центральный угол, меньшая хорда стягивает меньший центральный угол.
  • Больший центральный угол стягивается большей хордой, меньший центральный угол стягивается меньшей хордой.

Хорда и дуга

  • Если хорды стягивают равные дуги, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные дуги.
  • Из дуг, меньших полуокружности, большая дуга стягивается большей хордой, меньшая дуга стягивается меньшей хордой.
  • Из дуг, меньших полуокружности, большая хорда стягивает большую дугу, меньшая хорда стягивает меньшую дугу.
  • Из дуг, больших полуокружности, меньшая дуга стягивается большей хордой, большая дуга стягивается меньшей хордой.
  • Из дуг, больших полуокружности, большая хорда стягивает меньшую дугу, меньшая хорда стягивает большую дугу.
  • Хорда, стягивающая полуокружность, является диаметром.
  • Если хорды параллельны, то дуги, заключенные между этими хордами, равны.
  • Если дуги, заключенные между хордами, равны, то эти хорды параллельны.

Другие свойства

  • При пересечении двух хорд, получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой (см. рисунок).

Свойства хорд эллипса

Основные формулы

  • Длина хорды равна l = 2 R sin frac{alpha}{2}, где R — радиус окружности, alpha — центральный угол, опирающийся на данную хорду (рис. 1).
  • Формула, напрямую выводящаяся из Теоремы Пифагора (см. рис. 2): (frac{l}{2})^2+d^2=R^2, где l — длина хорды, R — радиус окружности, d — расстояние от центра окружности до центральной точки хорды.

Связанные понятия

Диаметр окружности, круга, сферы, шара — отрезок, соединяющий две точки на окружности (сфере) и проходящий через центр окружности (или сферы), а также длина этого отрезка. Диаметр равен двум радиусам. Под диаметром геометрической фигуры понимается максимальное расстояние между точками этой фигуры.

Диаметр геометрических фигур[править | ]

Диаметр окружности, круга, сферы, шара[править | ]

Радиус (r) и диаметр (d) окружности

Диаметр — это хорда (отрезок, соединяющий две точки) на окружности (сфере, поверхности шара), и проходящий через центр этой окружности (сферы, шара). Также диаметром называют длину этого отрезка. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. По величине диаметр равен двум радиусам.

Диаметр гиперболы[править | ]

Диаметры гиперболы

Диаметром гиперболы называют произвольную хорду, проходящую через её центр. Сопряжёнными диаметрами гиперболы называют пару её диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре.

Диаметр эллипса[править | ]

Сопряженные диаметры эллипса. Пунктирами обозначены главные полуоси

Диаметром эллипса называют произвольную хорду, проходящую через его центр. Сопряжёнными диаметрами эллипса называют пару его диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре. Если эллипс является образом окружности при аффинном преобразовании, то его сопряжённые диаметры являются образами двух перпендикулярных диаметров этой окружности.

Диаметр, перпендикулярный к сопряжённым ему хордам, называется главной осью и является осью симметрии фигуры.

Обобщения[править | ]

Диаметром множества, лежащего в метрическом пространстве с метрикой , называется величина . Например, диаметр n-размерного гиперкуба со стороной s равен

Диаметр графа[править | ]

Диаметр графа — это максимум расстояния между вершинами для всех пар вершин. Расстояние между вершинами — наименьшее число рёбер, которые необходимо пройти, чтобы добраться из одной вершины в другую.

Связанные определения[править | ]

  • Сопряжённые диаметры — диаметры, обладающие следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре. Если эллипс является образом окружности при аффинном преобразовании, то его сопряжённые диаметры являются образами двух перпендикулярных диаметров этой окружности.

Символ диаметра[править | ]

Символ диаметра «⌀» (может не отображаться в некоторых браузерах) схож начертанием со строчной перечёркнутой буквой «o». В Юникоде он находится под десятичным номером 8960 или шестнадцатеричным номером 2300 (может быть введён в HTML-код как или ). Этот символ не присутствует в стандартных раскладках, поэтому для его ввода при компьютерном наборе необходимо использовать вспомогательные средства — например, приложение «Таблица символов» (в Windows), программу Таблица символов Юникода (gucharmap) в GNOME, команду «Вставка» → «Символ…» в программах Microsoft Office и т. д. Кроме того, во многих случаях символ диаметра не будет отображаться, так как он редко включается в шрифты — например, он присутствует в Arial Unicode MS (поставляется с Microsoft Office), DejaVu (свободный), Code2000 (условно бесплатный) и некоторых других.

Следует отличать символ диаметра «⌀» от других похожих на него символов:

  • Буква «ø» — строчная перечёркнутая латинская буква O;
  • «∅» и «» — символы пустого множества, в свою очередь похожие на «Ø» (заглавную перечёркнутую латинскую букву O) или на перечёркнутый ноль;
  • Буква «Φ» — греческая заглавная буква «фи».

Также иногда диаметр обозначается буквой «d», однако в Интернациональной Системе (СИ) он обозначен как «⌀».

См. также[править | ]

В Викисловаре есть страница о термине «диаметр»

  • Радиус
  • Пи
  • При делении фигур на части меньшего диаметра возникла гипотеза Борсука, опровергнутая в 1993 году
  • Угловой диаметр астрономических объектов.

Утверждение

Если хорда перпендикулярна диаметру, то диаметр проходит через её середину.

Дано: окружность (O;R), AB — диаметр,

CD — хорда,

Доказать: CP=PD.

Доказательство:

Соединим концы хорды CD с точкой O — центром окружности.

1 способ

Рассмотрим прямоугольные треугольники COP и DOP.

1) OP — общий катет.

2) CO=DO (как радиусы).

Следовательно, треугольники COP и DOP равны (по катету и гипотенузе).

Следовательно, CP=PD.

Что и требовалось доказать.

2 способ

Так как CO=DO (как радиусы), то треугольник COD — равнобедренный с основанием CD, а OP — его высота, проведённая к основанию.

По свойству равнобедренного треугольника, OP является также его медианой.

Следовательно, CP=PD.

Таким образом, если диаметр окружности перпендикулярен хорде, то он проходит через её середину.

Окружность в математике является фигурой одной из самых главных и важных. Она необходима для множества расчетов. Знания свойств этой фигуры из школьной программы непременно пригодятся в жизни. Длина окружности требуется при расчете многих материалов с круглым сечением. Заниматься чертежами, строить заборчик возле клумбы – для этого понадобится знание геометрической фигуры и ее свойств.

Понятие окружности и ее основные элементы

Фигура на плоскости, состоящая из многочисленных точек, расположенных на равном расстоянии от центральной, называется окружностью. Отрезок, выходящий из центра и соединяющий его с одной из точек, образующих окружность, называется радиусом. Хордой является отрезок, который соединяет пару точек, расположенных по периметру круга, между собой. Если она расположена так, что проходит через центральную точку, то одновременно является диаметром.

Длина радиуса окружности равна длине диаметра, уменьшенной вдвое. Пара несовпадающих точек, находящихся на окружности, делят ее на две дуги. Если отрезок с концами в этих точках проходит через центральную точку (тем самым являясь диаметром), то образуемые дуги будут являться полуокружностями.

Длина окружности

Расчет периметра окружности определяется несколькими способами: через диаметр или через радиус. На практике было выявлено, что длина окружности (l) при делении на ее же диаметр (d) всегда дает одно число. Это число π, которое ровняется 3,141692666… Расчет производится по формуле: π= l/ d. Преобразуя ее, получается длина окружности. Формула такова: l=πd.

Для нахождения радиуса применим следующую формулу: d=2r. Это стало возможным, благодаря делению. Ведь радиус — это половина диаметра. Как только получили вышеуказанные значения, можно вычислить, чему же ровна длина окружности, по формуле следующего вида: l=2πr.

Основные свойства

Площадь круга всегда больше, если сравнивать ее с площадями иных замкнутых кривых. Касательная — это прямая, которая соприкасается с окружностью только в одной точке. Если прямая пересекает ее в двух местах, то она является секущей. Точка, в которой 2 различные окружности соприкасаются друг с другом, всегда находится на прямой, проходящей через их центральные точки. Пересекающимися на плоскости являются такие окружности, которые имеют 2 общие точки. Угол между ними рассчитывается как угол, образованный касательными к точкам соприкосновения.

Если через точку, не являющейся точкой окружности, провести две секущиеся к ней прямые, то образованный ими угол будет равен разности длин дуг, уменьшенной вдвое. Данное правило действует и в противоположном случае, когда речь идет о двух хордах. Две пересекающиеся хорды образуют угол, равный сумме длин дуг, уменьшенной в два раза. Дуги в такой ситуации выбирают в данном углу и углу, расположенному напротив. Оптическое свойство окружности гласит следующее: лучи света, отраженные от зеркал, расставленных по периметру круга, собираются обратно в его центр. В данном случае источник света должен быть установлен в центральной точке круга.

Похожие статьи

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий