Что такое маховик, двухмассовый маховик, каков принцип его работы

Основная функция маховика – передача через сцепление крутящего момента от коленчатого вала к трансмиссии. Также на его торцевую часть устанавливается зубчатый венец, за который стартер вращает КВ в момент запуска. Но не менее важен эффект сглаживания неравномерности вращения коленчатого вала, с которым лучше всего справляется двухмассовый маховик (Dual Mass Flywheel). Давайте рассмотрим его устройство, принцип работы, неисправности и методы их диагностирования.

image

Оглавление:

Отличие одномассового маховика от двухмассового

Простейший маховик представляет собой чугунный диск с фрикционной площадкой для подвода ведомого диска сцепления, ступицей для крепления к фланцу коленвала и отверстиями для прикручивания корзины. На торец напрессовывается стальной зубчатый венец, с которым в момент пуска зацепляется шестерня бендикса стартера. Для лучшего сглаживания неравномерности вращения и снижения ударных нагрузок при подводе нажимного диска, в нем устанавливаются демпфирующие пружины.

image

Конструкция двухмассового маховика сложнее и включает в себя следующие элементы:

  1. ступица для крепления к задней части КВ;
  2. радиальный подшипник. Обеспечивает взаимное вращение первичного и вторичного дисков;
  3. ведущий диск (первичный), который соединен с коленвалом;
  4. дуговая пружина;
  5. фланец. Именно через фланец крутящий момент передается от ведущего на ведомый диск;
  6. зубчатый венец (приварен либо напрессован методом горячей посадки);
  7. ведомый диск (вторичный). Соединен с первичным валом КПП;
  8. вентиляционные отверстия для рассеивания тепла;
  9. мембрана. Герметизирует полость с консистентной смазкой.
  10. кольцевая камера, заполненная смазывающим материалом. Смазка необходима для снижения трения между дуговыми пружинами и направляющими.

Природа пульсаций крутящего момента

Чем меньшее количество цилиндров, тем большей массы должен быть маховик. Связанно это с соотношением общего времени рабочего хода поршней к остальным тактам работы двигателя. Коленвал ускоряется только в момент рабочего хода поршня. Накопленная за это время кинетическая энергия маховика позволяет нивелировать замедление коленчатого вала при подходе поршня к Н.М.Т. после такта рабочего хода. Именно сглаживанием пульсаций крутящего момента достигается равномерная работа двигателя на низких оборотах. С увеличением количества цилиндров или повышением оборотов в единицу времени процентное соотношение эффективного ускорения коленвала к другим тактам увеличивается.

На низких и средних оборотах ДВС описанная неравномерность вращения коленчатого вала резонансными колебаниями отражается на узлах трансмиссии. На авто с МКПП крутильные колебания приводят к соударению контактных пар шестерен первичного, промежуточного и вторичного валов. Поэтому в движении на кузов передается низкочастотный звон, гул.

На втором графике видно, что коробка передач испытывает куда меньшие резонансные колебания. Помимо увеличения ресурса деталей трансмиссии, Dual Mass Flywheel повышает плавность хода и снижает шумовую нагрузку.

Как это работает?

Первичный и вторичный диски представляют собой две расцепленные массы. Они соединяются с помощью пружинно-демпфирующего механизма, закрепленного на подшипнике скольжения или шарикоподшипнике. Крутящий момент передается с помощью соединенного с ведомым диском фланца. Его выступы упираются в площадки торцов дуговых пружин.

Благодаря свободной посадке на подшипнике, диски могут вращаться относительно друг друга. Угол поворота ограничивается ходом пружины. Именно благодаря этому на ведомом диске гасятся крутильные колебания. При такой конструкции нажимной диск сцепления МКПП не требует установки демпфирующих пружин.

Усовершенствование конструкции

При возрастании крутящего момента двигателя для эффективного гашений крутильных колебаний необходимо утолщать либо увеличивать количество витков дуговых пружин. Но в случае неизменной величины установочного пространства ужесточение пружин снизит эффективность гашения колебаний на низких оборотах. Поэтому конструкторы прибегли к установке внутренних демпферов. Вмонтированные во фланце жесткие пружины работают только в зоне средних и высоких оборотах. В конструкции сохраняются мягкие дуговые пружины, которые сглаживают пульсации крутящего момента на холостом ходу и в зоне низких оборотов.

Читайте также:   Скрипят сайлентблоки, что делать?

Последним усовершенствованием, получившим массовое распространение, стало включение в конструкцию маятникового гасителя колебаний. Как и в обычном Dual Mass Flywheel, в конструкции имеется первичная вращающаяся масса (связана с коленвалом) и вторичная (связана с трансмиссией). Но помимо витых дугообразных пружин, со стороны вторичной массы устанавливаются подвижные пластины – грузы центробежного маятника. Его принцип работы заключается в создании противофазных колебаний, которые на низких оборотах должны накладываться на инерционные колебания двигателя. Таким образом, происходит взаимное гашение колебаний и выравнивание скорости вращения коленчатого вала.

В режиме низких оборотов из-за естественных вращательных пульсаций грузы маятника раскачиваются. С повышением оборотов увеличивается центробежная сила, действующая на грузы. Под ее действием амплитуда раскачиваний уменьшается, а грузы замирают в наиболее отдаленной от оси вращения точке. В зависимости от производителя и модели маховика, в конструкцию включат 4-6 плавающих грузов.

Почему не стоит менять DMF на одномассовый?

Главный катализатор массового внедрения двухмассовых маховиков – современное стремление к даунсайзингу (та же мощность при меньшем объеме) и даунспидингу (больше крутящего момента на меньших оборотах двигателя). Справедливо заметить, что в прошлом было достаточно как дизельных ДВС с большим крутящим моментом, так и мощных бензиновых моторов; и все они прекрасно ездили с одномассовыми маховиками. Но те дизели проектировались с огромным запасом прочности, а атмосферные бензиновые ДВС оживали только на высоких оборотах.

Увеличение до 3 тыс. Атм. давления впрыска в системах Common Rail, внедрение непосредственного послойного впрыска на бензиновые моторы, впускные коллекторы переменной длины, турбины с изменяемой геометрией и прочие эффективные разработки повысили мощностные характеристики двигателей. Но возможность с самых низов получить от сгорания ТПВС большое количество энергии привела к колоссальным нагрузкам на КВ и трансмиссию.

Но чтобы двигатель мог потреблять меньше топлива, двигаясь на как можно более низких оборотах, необходимо эффективно гасить неравномерность вращения коленвала. Главная причина появления двухмассового маховика не комфорт водителя, а продление ресурса коленчатого вала и коробки передач в условиях жестких экологических норм.

Внимание! Не рекомендуем менять демпферный маховик на одномассовый, если производитель не регламентирует допустимость такой замены.

Возможные неприятные последствия:

  • треснувший коленчатый вал. Будьте уверены, что в таком случае сэкономленных на замене маховика денег не хватит на покупку нового КВ, вкладышей, прокладок и оплату работы мастеров;
  • ускоренный износ синхронизаторов, шестерен КПП;
  • ухудшение плавности переключения передач, подергивания при старте.

Возможные неисправности и симптомы их проявления

  • Разрушение демпфирующих пружин, чрезмерные люфты между подвижными элементами. Симптомы: посторонние шумы, скрежет со стороны маховика, характерное бряканье при запуске и остановке двигателя. Вибрации, потряхивание на холостом ходу, в режиме низких и средних оборотов. В начальной стадии износа указанные симптомы проявляются только после холодного пуска. Характерно, что при выжиме педали сцепления работа мотора нормализуется. На малообъемных моторах изношенный DMF может стать причиной загорания лампочки Check Engine по причине многочисленных пропусков зажигания.
  • Износ шарикоподшипников. В случае работы подшипника скольжения на сухую металл корпуса возле посадочного места синеет.
  • Протечка смазки. Можно определить по следам смазывающего материала на стыке колокола КПП и блока двигателя. Из-за трения на сухую в скором времени вы услышите скрежет и громыхание со стороны маховика.
  • Износ шлицев ведомого диска и первичного вала КПП. Симптомом такой поломки будут щелчки и едва ощутимые удары при переключении передач.
  • Перегрев рабочей плоскости ведомого диска. Происходит при длительном проскальзывании ведомого диска сцепления. Можно определить по сине-фиолетовому оттенку и трещинах фрикционной поверхности.
  • Глубокие проточки на рабочей плоскости ведомого диска. Появляются от заклепок чрезмерно изношенного ведомого диска сцепления. Неисправность проявляется несоответствием роста оборотов двигателя и динамике разгона автомобиля. Двухмассовый маховик придется заменить.
  • Износ зубчатого венца стартера. Причина в неисправном либо неподходящем стартере.

Читайте также:   Как поменять сайлентблоки

Как правильно проверить?

Чтобы проделанная работа по снятию навесного оборудования и КПП не оказалась напрасной, в первую очередь проверьте систему питания, зажигания, навесное оборудование. Вполне вероятно, что причина неравномерной работы и посторонних шумов именно в них. Если основное подозрение упало на двухмассовый маховик, проверьте следующие характеристики:

  • усилие свободного хода ведомого диска относительно ведущего. Маховик для теста откручивать от двигателя необязательно. Руками проверните ведомый диск. Если он проворачивается только в одну сторону, или необходимое для поворота усилие отличается, неисправна дуговая пружина. Некоторые мастера замеряют усилие динамометрическим ключом. Чтобы применить полученные данные, их необходимо сравнить с характеристиками нового либо исправного демпферного маховика. Невозможность провернуть диск говорит о разрушении демпфирующего механизма, заклинивании подшипника;
  • угол взаимного проворота. Luk, Sachs – основные производители оригинальных комплектующих для многих марок автомобилей. Их технические специалисты регламентируют проверку по количеству зубьев венца стартера. Для измерения зафиксируйте маховик от проворачивания. Руками поверните ведомый диск до упора влево, сделайте пометку на вторичном диске и венце стартера. Затем поверните его в противоположную сторону и сделайте отметку на венце напротив уже имеющейся на диске. На исправном узле производства Luk должно быть не больше 7 зубцов, на маховиках Sachs не более 3. Рекомендуем уточнять этот параметр для каждой модели DMF;
  • радиальный и продольный люфт. Небольшой люфт в обеих плоскостях – вполне нормален для исправного демпферного маховика.

Обязательно осмотрите корпус, уплотнительную мембрану и фрикционную поверхность на предмет описанных выше признаков перегрева и критичного износа.

Ремонт или реставрация?

Заводом-изготовителем не предполагается разборка и восстановление демпферных маховиков, поэтому части корпуса соединены заклепками. Соответственно, запчастей и деталей с ремонтными размерами для такого узла в общественном доступе нет. Но ввиду немалой стоимости оригинальных демпферов, услуга по восстановлению становится все популярней. Многие остаются довольны, но и тех, кто спустя пару десятков тысяч пробега повторно сталкивается с симптомами неисправности, также хватает.

Однозначный ответ на вопрос – реставрировать или менять, пока что дать сложно. Перед обращением в профильные мастерские, найдите реальных клиентов, которые после восстановления проехали как минимум 20-30 тыс. км. Если вы склоняетесь к замене, устанавливайте только узлы, которые поставляются производителем на конвейеры. Luk и Sachs – крупнейшие поставщики демпферных маховиков для Skoda, Volkswagen, Ford, BMW и многих других марок.

Внимание! При первых симптомах неисправного маховика его необходимо заменить. Если игнорировать признаки поломки, изношенный маховик быстро убьет сцепление, разобьет шлицы первичного вала и может стать причиной поломки коробки передач.

Что сокращает срок службы маховика?

Езда в натяг на низких оборотах – наиболее вредоносный для демпферного маховика режим работы. На авто с АКПП о балансе между сохранностью узлов и экономией топлива заботится ЭБУ коробки передач. На авто с МКПП вся ответственность лежит на водителе. Поэтому рекомендуем держать низкие обороты только для поддержания постоянной скорости. При обгоне либо подъемах обязательно переключайтесь на пониженную ступень. Из-за обилия крутящего момента, который доступен с самих низких оборотов, на современном авто вы можете даже не почувствовать возросшую нагрузку. Но детали КШМ и DMF при разгоне в натяг переживают сильнейшие нагрузки.

Не прибавят маховику ресурса и резкие старты с места, постоянное бросание педали сцепления и значительная форсировка двигателя. Износ подушек крепления КПП, двигателя, неисправность в системе зажигания или питания, при которой двигатель работает неровно, также значительно уменьшают срок службы демпферного маховика.

Как ВЫ убиваете Двухмассовый МАХОВИК вашего АВТО!!Как ВЫ убиваете Двухмассовый МАХОВИК вашего АВТО!!Dual Mass Flywheel - Design & OperationDual Mass Flywheel — Design & Operation
  1. Главная
  2. Наука
  3. Материал для маховика

Материал для маховика —это для примера. С таким же успехом можно было задать вопрос: из какого материала делать ракеты и теннисные ракетки, лодки и шесты для прыжков, топливные баки и корпуса автомобилей? И ответить: рациональнее всего из композитов.

Что такое маховик

Что такое маховик и для чего он нужен? В политехническом словаре за 1977 год сказано, что маховик — это колесо с массивным ободом, устанавливаемое на валу машины с неравномерной нагрузкой для выравнивания ее хода. Если иметь в виду только эту цель, то для изготовления маховиков целесообразно выбирать как можно более тяжелый материал, чтобы они справлялись со своей задачей при сравнительно небольших размерах. Маховик — колесо с массивным ободом. С тех пор роль маховиков в технике существенно расширилась.  Во всяком  случае,  приведенное определение явно  неполное. Сегодня повышенный интерес к маховикам связан не только и не столько с их традиционным использованием для выравнивания нагрузки на валах поршневых двигателей, компрессоров, насосов и других машин, сколько с проблемой рекуперации механической энергии, то есть использования энергии, погашаемой при торможении машин. Суть проблемы состоит в следующем. Движущиеся поезда, автомобили, трамваи, троллейбусы, автобусы периодически (и довольно часто) нужно останавливать. Для этого, как известно, служат тормоза. Но при каждом торможении кинетическая энергия транспортного средства переходит в тепло, нагревая тормозные колодки, диски и безвозвратно рассеиваясь в окружающей среде. При современном энергетическом кризисе такое расточительство недопустимо. Как показывают подсчеты, примерно половина энергии, развиваемой двигателями, теряется при торможении.

Маховик — аккумулятор механической энергии

Вот маховики-то и могут помочь резко снижать эти потери. Маховик — аккумулятор механической энергии, то есть устройство, позволяющее накапливать механическую энергию, хранить ее и при необходимости опять выделять. Если массивный маховик заставить вращаться с большой скоростью, он может за счет своей инерции развить мощность, достаточную для того, чтобы привести в движение автобус или поезд. Это его свойство и навело на мысль: вместо того, чтобы тратить кинетическую энергию машины на нагрев тормозов, ее нужно расходовать на раскручивание маховика, установленного на машине. Маховик — аккумулятор механической энергии. При торможении маховик накапливает энергию, а когда возникнет необходимость снова тронуться с места, эта энергия будет передаваться с помощью специальных механизмов на ведущие колеса. Иными словами, разгон будет осуществлять энергия, накопленная при торможении. Это позволит на 30— 50 % сэкономить горючее, значительно уменьшить количество токсичных выхлопных газов, повысить проходимость. В наше время все это настолько важно, что имеет прямой смысл заняться разработкой транспортных средств, снабженных маховиками, которые играют роль дополнительных источников энергии. И во всем мире такими разработками усиленно занимаются. Основное требование, предъявляемое к маховику, вытекает из его назначения: он должен накапливать при вращении как можно больше энергии. Если маховик представить в виде тонкого кольца, величина этой энергии Е оценивается формулой:

Е=0,5 mV2,                                       (1)

где m— масса кольца, V — линейная скорость его вращения. Из этой формулы следует, что для увеличения энергоемкости маховик следует делать как можно тяжелее и вращать с максимально возможной скоростью.

Какой применить материал для маховика

Возникает вопрос, какой применить материал для маховика? Нужно взять материал с максимально высокой плотностью γ, чему соответствует вольфрам, плотность которого 19 300 кг/м3. Большую плотность имеют только осмий (γ=22 500 кг/м3), иридий (γ=22 400 кг/м3) и платина (γ=21 450 кг/м3), но это очень дорогие металлы. Рассмотрим вариант применения вольфрама. До какой скорости можно раскручивать маховик? Ясно, что не до бесконечно большой. Предельная скорость вращения ограничена прочностью материала. Известно, что при достижении определенной скорости вращения маховик может разорваться. Поскольку эти скорости составляют десятки и сотни метров в секунду, от такого разрушения ничего хорошего ждать не приходится. В лучшем случае дело кончится поломкой вала и ходовой части машины. Но при разрыве маховика разлетающиеся с огромной скоростью обломки могут разрушить близлежащие постройки и, что самое страшное, привести к человеческим жертвам. Так что допускать разрушения ни в коем случае нельзя.

Какие силы разрывают маховик

Знаете ли вы, какие силы разрывают маховик? Часто можно  услышать  ответ:   силы  инерции  или  центробежные силы. Ничего подобного. Таких сил просто-напросто не существует. Вернее, они существуют на бумаге или в нашем воображении — так легче и удобнее проводить расчеты, но в маховике их нет. А есть силы связи между отдельными частями маховика (силы упругости), которые в результате стремления частей двигаться по инерции (то есть равномерно и прямолинейно) при вращательном движении приводят к деформации маховика. Возникающие при деформации силы обеспечивают всем частям вращающегося тела ускорения, необходимые для движения по окружности. Если для обеспечения вращения нужны силы, превышающие прочность связи отдельных частей тела, оно разрушается. Таким образом, непосредственной причиной разрушения маховика является не его вращение и не действие воображаемых центробежных сил, а его деформация. Для тонкостенного кольца, которым мы моделируем маховик, величину напряжений σ, возникающих в нем, можно оценить соотношением:

 σ=γv2,                                                 (2)

где γ — плотность материала, v — линейная скорость вращения маховика. Из этого уравнения можно рассчитать предельную допустимую скорость vпред, которая приводит к разрушению. Оно произойдет, когда величина напряжения σ достигнет предела прочности σв материала, из которого маховик изготовлен. При этом скорость v будет равна предельной скорости vпред которая рассчитывается из выражения

vпред  = √σв / γ= √σуд                         (3)

Отношение прочности σв к плотности γ называется удельной прочностью σуд  материала. Следовательно, предельно допустимая скорость вращения маховика равна корню из его удельной прочности. Формула (1) определяет величину всей энергии, запасаемой маховиком. А удельная энергия, запасаемая единицей массы маховика (например, одним килограммом), составляет:

е=Е/m=0,5v2.                                      (4)

Предельную величину удельной энергии епред, которую в состоянии накопить каждый килограмм массы маховика, можно рассчитать из уравнения (4), где вместо v следует поставить значение vпред из формулы (3), то есть:

епред=0,5σв/γ=0,5σуд                           (5)

Таким образом, максимальная удельная энергия, которую можно «накачать» в маховик, однозначно определяется удельной прочностью материала, из которого он изготовлен. При одинаковой прочности двух материалов большую удельную прочность имеет более легкий из них. Значит, чтобы сделать маховик максимально энергоемким, его нужно делать не из тяжелого, а из легкого, но прочного материала. Итак, супермаховики, то есть маховики, способные запасать очень большое количество энергии, нужно делать из сверхпрочных и легких материалов. Из каких именно? Чтобы ответить на этот вопрос, давайте сопоставим значения удельной прочности некоторых традиционных машиностроительных материалов (сталей, алюминиевых, титановых, вольфрамовых сплавов) и некоторых композитов. Эти значения приведены в таблице.

Материал Предел прочности  при растяжении, МПа Плотность, кг/м3 Удельная прочность, МПа/(кг/м2)
Легированная сталь 1500 7800 0,190
Алюминиевые сплавы 600 2700 0,220
Титановые сплавы 1500 4500 0,300
Вольфрамовые сплавы 1500 19300 0,078
Композиты:
Бороалюминий 1400 2700 0,520
Углеалюминий 1000 2300 0,430
Углепластики 1400 1550 0,900
Органопластики 1500 1380 1,090

Приведенные данные говорят: лучше всего для изготовления супермаховиков подходят композиты, в частности органопластики.  Они  обладают наибольшей удельной прочностью из всех известных конструкционных материалов. А вольфрам, который мы хотели использовать, оказался самым неподходящим материалом, поскольку у него самая низкая удельная прочность. Каждый килограмм маховика из огранопластика способен накопить в 14 раз больше энергии, чем из вольфрама. Это связано с тем, что большая прочность и малая плотность органопластика позволяют раскручивать изготовленные из него маховики до огромных скоростей, тогда как вольфрамовые маховики сами себя разрывают при сравнительно низких скоростях вращения. Но не во всех случаях удается реализовать возможности, заложенные в органопластиковых маховиках. Не будем забывать, что, хотя удельная энергия не зависит от массы маховика, абсолютная величина накапливаемой энергии пропорциональна его массе, поэтому маховик должен быть достаточно тяжелым, а при небольших размерах нужную массу из органопластика набрать трудно. Но если особых ограничений на размеры маховика нет и можно обеспечить максимально допустимые (из соображений прочности) скорости вращения, органопластики находятся вне конкуренции. Из таблицы видно, что по удельной энергоемкости к органопластикам приближаются углепластики. Хотя они имеют несколько меньшую удельную прочность, их модуль Юнга, (подробнее: Армированные композиты) намного выше, а это означает, что маховики из углепластиков испытывают меньше деформации. Обстоятельство немаловажное. Дело в том, что маховики из органопластиков склонны к расслоению, и одна из главных причин этого — их низкая жесткость. Супермаховики не только помогают экономить энергию, теряемую при торможении, они могут сами выполнять роль двигателя машины. Подсчитано, что супермаховик из органопластика массой 127 кг и энергоемкостью 30 квт • ч, раскрученный в течение 5 минут мощным внешним двигателем, может обеспечить движение легкового автомобиля со скоростью 96 км/ч на расстояние 320 км. Электромобилю с аналогичными техническими характеристиками нужна батарея аккумуляторов массой 1 т. Как видим, 1 кг маховика может запасать намного больше энергии, чем современный электрический аккумулятор такой же массы.

Органопластики

Органопластики — это композиты, состоящие из полимерной матрицы и органических волокон. Если раньше органические волокна (капроновые, нейлоновые и др.) не могли конкурировать по прочности с лучшими образцами стеклянных, металлических и керамических волокон, то сегодня картина резко изменилась. Сверхпрочные и очень легкие органические волокна — наиболее перспективные армирующие элементы для полимерных матриц. Большую популярность приобрели волокна, которые называются у нас СВМ, а за рубежом — Кевлар. Они имеют прочность при растяжении 3000—4000 МПа, легко подвергаются переработке, с ними удобно работать, и их выпуск постоянно растет. Однако в тяжелонагруженных конструкциях применение органопластиков вследствие их низкого модуля Юнга приводит  к  большим  деформациям,  что  сказывается  на  работоспособности   конструкций.   Чтобы   этого   не   происходило, к органическим волокнам добавляют более жесткие углеродные   и   получают   так   называемые   гибридные   композиты, содержащие  два  и   более   видов   волокон.   Если  у  волокон марки Кевлар-49 модуль упругости 140 000 МПа, то у углеродных    волокон — 200 000—700 000    МПа    при    прочности 1000—3500 МПа. Волокна кевлар как вид органопластики. В  качестве  арматуры можно использовать не только  отдельные волокна и нити, но и ткани, сетки, пряжу из органических и углеродных волокон. Низкая плотность органо- и углепластиков (в пять раз ниже, чем у стали и почти вдвое, чем у алюминия) наряду с высокой прочностью делает их очень привлекательными для конструкторов, занимающихся разработкой не только маховиков, но и космических кораблей, самолетов, подводных лодок, спортивного инвентаря и многих других изделий. Полимерные композиты уже широко применяются в технике. А внедрение в промышленность композитов на металлической основе отстает от полимерных. Причина этого ясна. Методы получения новых композитов с  полимерными  матрицами  (угле-,  органо-,   боропластиков) принципиально не отличаются от методов получения давно известных стеклопластиков, которые разработаны еще полвека назад. Замена стеклянных волокон более совершенными проходит сравнительно безболезненно, на том же оборудовании, теми же специалистами. А опыта промышленного производства металлических композитов пока очень мало. Это совсем новые материалы, они требуют нетрадиционных для металлургии и металлообработки технологий, создания специального оборудования, они просто непривычны для металлургов. А непривычное всегда кажется ненадежным. Еще один вопрос, который хотелось бы обсудить: в каких случаях следует применять металлические, а в каких — полимерные  композиты?  Здесь  все  определяют условия работы материала. В супермаховиках, например, целесообразнее использовать полимерные композиты, поскольку у них удельная прочность  выше,   а нагрев  при работе  невелик.  И вообще, при температурах, близких к комнатной, полимерные композиты  обычно   предпочтительнее  по  механическим  свойствам. Но у полимеров есть серьезный недостаток — они не выдерживают   высоких   температур.   Самые   термостойкие   из них разрушаются при температурах выше 600—700 К. Поэтому для конструкций, работающих в условиях интенсивного нагрева, нужны металлические композиты. Выбор матричного материала могут диктовать и такие показатели, как электросопротивление, теплопроводность, стойкость   к   радиации,    способность   накапливать   статическое электричество и др. В одних случаях по этим показателям подходят полимеры, в других — металлы. Поэтому полимерные и металлические композиты не только конкурируют, но и дополняют друг друга. И чем больше различных композитов создадут ученые, тем шире станут возможности техники,  тем совершеннее  будут изготовленные из них изделия.   Рейтинг: /5 — голосов

В силу конструкционных особенностей поршни ДВС машины во время работы имеют несколько мертвых точек. Выводит их из этого положения именно массивная деталь – маховик двигателя, набирающий инерцию во время вращения, позволяющую преодолеть мертвую точку в верхней и нижней амплитуде.

Для чего нужен маховик в двигателе?

Необходим маховик двигателя для набора инерции вращения коленчатого вала, которая позволяет поршням преодолеть мертвые точки. Кроме того, эта деталь двигателя внутреннего сгорания передает крутящий момент на стартер и коробку передач. Снижается неравномерность вращения  кривошипно-шатунного механизма.

Другими словами – маховик условно является маятником, вращающимся в одну сторону. Без него невозможен запуск ДВС, снизится ресурс практически всех систем мотора.

К каким системам относится?

  • редуктор системы запуска – на него передается вращение;
  • стартер – работа маховика обеспечивает начальное вращение вала ДВС;
  • коробка передач – на нее передается крутящий момент с диска сцепления;
  • кривошипно-шатунный механизм – сглаживаются импульсы неравномерного вращения.
image
Рис. 2 Зацепление венца маховика с бендиксом стартера
image
Рис. 3 Жесткая связь маховика 1 с диском сцепления 2

Крупные размеры маховика позволяют при начальном вращении набрать этой детали инерцию. Поскольку она жестко связана с коленвалом, поршни в нижней/верхней точке не задерживаются, а увлекаются дальше по ходу вращения для нового цикла сжатия/воспламенения топлива.

image
Рис. 4 Преодоление поршнями мертвых точек за счет инерции маховика

Из-за наличия мертвых точек вал вращается неравномерно, вначале набирает угловую скорость, затем теряет ее. Поэтому диаметр маховика подбирается для каждого мотора индивидуально, чтобы сгладить значения этих угловых скоростей в разные отрезки времени. Основными проблемами при этом становятся:

  • расположение вращающегося маховика на одном конце коленвала – резкое увеличение нагрузки на подшипник с этой стороны;
  • повышение общего веса коленвала – нагрузка возрастает на оба подшипника, кривошипы и шатуны.
image
Рис. 5 Расположение маховика на валу ДВС

Поэтому подшипники усиливаются, чтобы вращаться в экстремальных эксплуатационных условиях весь заявленный ресурс.

Местоположение внутри ДВС

Находится эта деталь всегда у коренного подшипника коленчатого вала, являющегося самым мощным в моторе. Более подробно увидеть местоположение внутри ДВС позволяет чертеж маховика сборочный. К фланцу коленвала он крепится ступицей, обратная сторона приходит в зацепление с главным диском сцепления.

Зубчатый венец на наружном диаметре маховика предназначен для зацепления с бендиксом стартера в момент запуска ДВС.

image

Поскольку во всех указанных приводах используются зубчатые передачи, метка на маховике показывает его нормальное положение относительно вала и ведущего диска сцепления. Чтобы деталь, в свою очередь, не создавала вибраций на коленвал ДВС, производится балансировка маховика на стенде.

Конструкция маховика

Изначально детали изготавливалась из чугуна цельной, в настоящее время кроме классических модификаций существуют дополнительные виды маховиков демпферный и облегченный. Автомобиль комплектуется этим узлом на заводе, но в некоторых случаях владелец может произвести тюнинг ДВС, заменив его другой модификацией.

Классический сплошной

Традиционный полнотелый маховик отливается в виде диска из серого чугуна. Этот конструкционный материал не пригоден для изготовления зубчатой передачи, зато резко снижает себестоимость детали и повышает эксплуатационный ресурс.

Затем на наружный диаметр заготовки напрессовывают обод маховика с зубьями для периодического зацепления в момент запуска ДВС с бендиксом стартера. Диаметр готового изделия обычно составляет 40 см, число зубьев зависит от конкретной схемы передачи авто.

image
Рис. 7 Цельнометаллический маховик

С одной стороны поверхность маховика имеет вид фланца для присоединения к аналогичным посадочным отверстиям главного диска сцепления. Для защиты от механических повреждений используется кожух маховика, крепящийся болтами к блоку цилиндров.

При регулярном подключении/отключении стартера возможна поломка зубьев. Поэтому обод (венец) считается расходным элементом детали, продается отдельно. Корпус (тело) ремонту обычно не подлежит, заменяется целиком после выработки ресурса.

image
Рис. 8 Венец маховика

В современных машинах воспламенением в камерах сгорания заведует датчик ДПКВ или ВМТ. Он отсчитывает проходящие мимо его зубцы наружного венца маховика, определяя положение коленвала в каждый момент времени. Сигнал подается в бортовой компьютер, по положению вала вычисляется, какой цилиндр в это время сжимает топливную смесь, подается искра для воспламенения.

Облегченный

При решении основной задачи при комплектации коленвала маховиком – вывод из мертвых точек поршней ДВС, автоматически возникает другая проблема:

  • тяжелая деталь сильнее нагружает коленчатый вал и увеличивает время разгона машины;
  • угловая скорость маховика не может снизиться мгновенно, при торможении происходит запаздывание.
image
Рис. 9 Облегченный маховик

Поэтому для улучшения указанных характеристик мотора вес детали снижают на несколько килограммов, изготавливая прорези ближе к центру. Динамика улучшается максимум на 5 – 7%, однако на низких оборотах возникают следующие минусы:

  • затрудненное движение по скользкой и грязной трассе;
  • снижение момента крутящего;
  • при переключении на высшую передачу недостаточный набор оборотов, изнашивается диск сцепления;
  • небольшое увеличение расхода горючего;
  • быстрая потеря крутящего момента, несмотря на практически мгновенный разгон.

Для облегченных деталей из алюминиевого сплава или с прорезями в теле используется стандартный кожух маховика, которым укомплектована машина на заводе.

Двухмассовый

Проблему компенсации вращательных колебаний решает демпферный маховик, конструкция которого схожа с обгонной муфтой генератора. В отличие от бензинового двигателя дизельный мотор по умолчанию низкооборотный. Динамика машины достигается за счет передаточного числа трансмиссии. Кинематическая схема привода здесь сложнее, детали прочнее, а узлы крепче.

Рис. 10 Двухмассовый маховик

Двухмассовый маховик ДВС имеет сложную конструкцию:

  • один диск (корпус) крепится на коленвал, имеет наружный венец для зацепления со стартером;
  • второй зафиксирован на диске сцепления;
  • между собой диски вращаются относительно друг друга на радиальном и упорном подшипниках;
  • демпфирующие пружины так же находится между дисками в полимерном сепараторе, предотвращающем блокировку.
Рис. 11 Конструкция демпферного маховика

В момент запуска ДВС работает пакет с мягкой пружиной, в нормальном режиме работы двигателя включается в действие жесткая пружина. Для смазки деталей трения используется паста с сульфидом молибдена, закладывающаяся в маховик на весь эксплуатационный ресурс, составляющий около 150 000 км пробега машины.

Причем, смазка не должна попадать на детали сцепления, с торцов дисков маховика она удаляется при ТО и осмотре.

Принцип действия

В момент запуска ДВС вращение маховика обеспечивается стартером, деталь получает начальную скорость, набирает инерцию. Дальше поршень двигателя «зависает» в верхней мертвой точке, вал вращаться не может. Однако за счет инерции маховика коленвал немного прокручивается, что позволяет ему осуществить следующий цикл сжатия, воспламенения топливной смеси, получить энергию для следующего вращения.

Рис. 12 Принцип работы маховика со сцеплением

В это же время датчик контролирует положение вала и поршней на нем, соответственно. Информацию, передаваемую этим прибором, анализирует компьютер, подавая поочередно зажигание в соответствующие камеры сгорания.

В двухмассовом маховике ситуация немного другая:

  • в момент старта одна половинка этого узла получает высокую угловую скорость, вторая остается неподвижной;
  • в это же время первая половинка маховика начинает сжимать пружину, которая обеспечивает плавное вращение жестко связанного с ней диска трансмиссии;
  • затем скорости обеих половинок выравниваются относительно друг друга, работают в едином режиме;
  • в момент сбрасывания оборотов водителем педалью газа вторая половинка начинает обгонять первую;
  • однако жесткого дара по деталям мотора вновь не происходит, так как начинает сжиматься другая пружина в обратном направлении;
  • скорости половинок снова выравниваются, цикл повторяется снова.
Рис. 13 Принцип действия маховика двухмассового

За воспламенение по прежнему отвечает ДПКВ датчик, а кожух маховика защищает узел от внешних воздействий. В узел сцепления встроен аналогичный демпфер, который при эксплуатации двухмассового маховика становится не нужным.

Ремонт маховика

Основные неисправности маховика логично вытекают из его конструкции:

  • изнашиваются и ломаются зубья венца;
  • лопаются пружины, протекает смазка, попадает на диск сцепления (только у демпферных модификаций).
Рис. 14 Выработка зубьев
Рис. 15 Поломка пружины демпфера

Внимание: Вышедший из строя ДПВК датчик не относится к поломкам маховика. Но машина точно не заведется, поскольку нарушится последовательность зажигания к камерам сгорания.

Зато во время разрушения пружин или подшипников маховика демпферного части деталей могут повредить стартер, детали сцепления, что резко увеличит стоимость ремонта машины.

Причины неисправности

Кроме агрессивного стиля вождения (быстрый разгон/резкое торможение) причинами неисправности маховика являются:

  1. несоблюдение требований руководства эксплуатации – скорости переключаются на «неправильных» оборотах;
  2. плохой контакт – клеммы стартера и АКБ должны крепится жестко;
  3. износ подшипников коробки передач и коленвала – возникают вибрации;
  4. износ подушек ДВС – вибрации передаются на все элементы двигателя;
  5. нарушена регулировка топливной аппаратуры – двигатель работает неравномерно, с перебоями;
  6. качество солярки – влияет на процесс сгорания, возможны детонации.

Указанные причины способны многократно увеличить амплитуду не системных колебаний в дизеле. Системные колебания производителем учтены, для их компенсации используются технические решения в самой конструкции ДВС.

Диагностика

Поскольку вращается маховик на валу ДВС, диагностировать его неисправности очень сложно. Например, даже для визуального осмотра придется снять крышку и частично разобрать узел сцепления. Посторонние звуки (треск) очень схожи с неисправностями стартера, так как зубья бендикса входят в зацепление с венцом маховика.

Таким образом, при внешнем осмотре после разборки можно выявить дефекты зубчатой передачи и заусенцы со стороны диска сцепления (при шлифовке допускается снимать максимум 0,3 мм).

Смотрите также: Способы снижения расхода топлива Подготовка и эксплуатация автомобиля в зимний период Новый Шкода Кодиак: что поменялось Прекрасный пол и автомобиль Световые сигналы автомобилей Рено аркана: технические характеристики

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий