Что такое канал связи? Как определяется пропускная способность канала связи?

Поделись знанием: Материал из Википедии — свободной энциклопедии Перейти к: навигация, поиск

Пропускная способность — метрическая характеристика, показывающая соотношение предельного количества проходящих единиц (информации, предметов, объёма) в единицу времени через канал, систему, узел.

Используется в различных сферах:

  • в связи и информатике П. С. — предельно достижимое количество проходящей информации;
  • в транспорте П. С. — количество единиц транспорта;
  • в машиностроении — объём проходящего воздуха (масла, смазки);
  • в электромагнетизме (оптике, акустике) — отношение потока энергии, прошедшего сквозь тело, к потоку, который падает на это тело. Сумма пропускной способности, поглотительной способности и отражательной способности равна единице (см. также Прозрачность среды).
  • в гидравлике — Пропускная способность (гидравлика).

Может измеряться в различных, иногда сугубо специализированных, единицах — штуки, бит/с, тонны, кубические метры и т. д.; в оптике — безразмерной величиной.

Пропускная способность канала

Наибольшая возможная в данном канале скорость передачи информации называется его пропускной способностью. Пропускная способность канала есть скорость передачи информации при использовании «наилучших» (оптимальных) для данного канала источника, кодера и декодера, поэтому она характеризует только канал.

Пропускная способность дискретного (цифрового) канала без помех

C = log m × Vт,

где m — основание кода сигнала, используемого в канале. Скорость передачи информации в дискретном канале без шумов (идеальном канале) равна его пропускной способности, когда символы в канале независимы, а все m символов алфавита равновероятны (используются одинаково часто). Vт — символьная скорость передачи.

Пропускная способность нейронной сети

Пропускная способность нейронной сети — среднее арифметическое между объёмами обрабатываемой и создаваемой информации нейронной сетью за единицу времени.

См. также

—>
Что такое канал связи? Как определяется пропускная способность канала связи? —>Рейтинг—>: /3
| —>Просмотров—>:8465 | —>Добавил—>:V_V (12.07.2018) (Изменено: 12.07.2018)

Всего ответов: 4

Обсуждение вопроса:

Всего ответов: 4

Biz-ledy 12.07.2018 оставил(а) комментарий:
buzz 12.07.2018 оставил(а) комментарий: Пропу­скная способность канала связи равна максимальной производительности источника на входе канала, полностью согласованного с характеристиками этого канала, за вычетом потерь информации в канале из-за помех.
Oleg74 12.07.2018 оставил(а) комментарий:
Forget 12.07.2018 оставил(а) комментарий: Канал связи (передачи информации) — это система технических средств и среда распространения сигналов для передачи сообщений от источника к приёмнику. При непосредственном общении людей информация передаётся с помощью звуковых волн, при разговоре по телефону — с помощью акустических и электрических сигналов, распространяемых по линиям связи, при чтении — с помощью световых волн.

—>

Количество информации переданной по дискретному каналу. Основной задачей систем связи является передача информации от источника к получателю. Решение этой задачи сопряжено с определенными трудностями, связанными не только с представлением информации в виде сообщения, пригодного для восприятия и обработки, но и с преобразованием данного сообщения в сигнал, пригодный для передачи по линии связи. Представим графически процесс передачи информации по каналу связи (рис. 4.2) и учтем при этом возможное влияние помех.

Н{Х)С /(У,АГ)= Я(АГ)-я(*^) Я(Гг

Рис. 4.2. Иллюстрация передачи информации по каналу связи

Пусть дискретный канал определяется: Х={х.} — алфавитом источника сообщений; У={у.} — алфавитом получателя сообщений; H{X/Y} —«потерями» информации; H(Y/X) — ложной информацией, создаваемой помехами; I(Y, X) — количеством информации, переданной по каналу.

Условная энтропия характеризует среднюю степень неопределенности принимаемых сигналов, обусловленную действием помех.

Рис. 4.3. Вероятностные характеристики передачи информации

При сопряжении входа канала с любым источником двоичной информации на вход канала могут поступать двоичные символы х1 и х2 с вероятностями р(х1) и (1—р(х1)) соответственно (рис. 4.3). На выходе канала появляются двоичные символы у1 и у2. Обозначим вероятность ошибки при передаче любого символа через рош. Тогда,

Р(^)=1-Рош, a Pg)-P„.

В общем случае, для га-го дискретного канала:

Рош т — 1 Д Рош

при i Ф j, при i = j.

Тогда «шумовая» энтропия будет определяться выражением:

Н(УМ = -(1 — рош) • log2 (1 — — рош ? log2 (^j) (4.6)

Из полученного выражения следует, что энтропия определяемая только помехой не зависит от вероятности pi(xi) появления символов на входе канала.

Если символы на входе канала выбираются независимо от предыдущих символов с одинаковыми вероятностями, то энтропия выходных символов достигает своего максимального значения, равного: H(Y)=log2m.

Таким образом, количество информации, переданной по каналу, это разность между энтропией на выходе и энтропией шума:

l(Y,X) = log2m + (1 от) ? log2(l — рош) +рош

Количество информации, переданной по каналу связи, обладает следующими основными свойствами:

  • I(Y, Х)>0, причем I(Y, Х)=0 тогда и только тогда, когда входные и выходные сообщения в канале взаимно независимы;
  • I(Y, Х)<Н(Х),</i> причем I(Y, Х)=Н(Х) тогда и только тогда, когда входная последовательность определяется однозначно по выходной последовательности, например, когда в канале нет помех;
  • I(Y, X)=I(X, Y)=H(Y)-H(Y/X) следует, что количество информации не изменится, если входную и выходную последовательность поменять местами.

Пропускная способность дискретного канала. Пропускной способностью канала, рассчитанной на один входной символ, называется максимальное количество информации, которое может быть передано по каналу, причем максимум ищется по всем возможным источникам X, имеющим различные (произвольные) вероятностные характеристики:

С = maxxI(Y, X) (бит/символ).

Часто более удобно пользоваться пропускной способностью канала, рассчитанной не на один входной символ, а на единицу времени:

C = i-C’ (бит/с).

Величину С называют пропускной способностью канала в единицу времени или просто пропускной способностью. Пропускная способность канала обладает следующими свойствами:

  • — С>0, С=0 тогда и только тогда, когда вход и выход канала статистически независимы;
  • C<(l/T)log<sub>2 т для канала без помех.

Из определения пропускной способности следует, что характеристика описывает свойства канала, по которому передается информация от определенного источника. Очевидно, никакой источник не способен передать по каналу количество информации большее пропускной способности, и данная характеристика описывает потенциальные возможности канала по передаче информации.

Пропускная способность симметричного дискретного канала без памяти. Пропускная способность дискретного канала, по которому передается ш дискретных сигналов, вычисляется по формуле:

С = Vu [§2 m + (1 — рош) • log2 (1 — рош) + рош • log2 (4.7) где V=IT-скорость модуляции, бод; Г-длительность сигнала;рошвероятность ошибки в канале. Заметим, что пропускная способность дискретного канала без помех при р„..=0:

Сдк = Ц,- [log2m].

В частности пропускная способность двоичного канала:

Сдк = V„ • [1 + (1 -рош) • log2(l -рош) + рош • log2 рош] (4.8)

При рош=0,5 пропускная способность двоичного канала равна нулю. Этот случай называют обрывом канала. Действительно, /?ош=0,5 можно получить и без передачи информации по каналу связи. А при pow=l пропускная способность такая же, как и при pow=0 (канал без помех). Это объясняется тем, что при рош=1 достаточно заменить нули на единицы и единицы на нули, чтобы абсолютно правильно восстановить переданный сигнал.

Определим пропускную способность двоичного телеграфного канала, если скорость передачи в нем 1000 бит/с и вероятность ошибки 10’3, и сделаем вывод о том, насколько отличается пропускная способность этого канала от идеального. Согласно формуле (4.8), при заданных параметрах =989 бит/с.

Для идеального канала при /?ow=0 получаем СДА=Г=1000 бит/с. Сравнение этих величин показывает, что ошибки в канале привели к уменьшению пропускной способности на 11 бит/с (т. е. потери составили 1,1 %).

За последние несколько лет в разы увеличились разрешения IP камер видеонаблюдения и несомненно качество получаемого изображения. Бешеными темпами развиваются цифровые Ip системы и сейчас, появились IP камеры видеонаблюдения с разрешениями 4K. Давайте разберемся, насколько с увеличением потока возросли требования к пропускной способности ЛВС. Без понимания полной картины, системы, построенные на современном IP оборудовании могут неверно проектироваться. В результате нехватки сетевых ресурсов из-за повышенной нагрузки на сеть, получаемое видео с IP камер может быть с плохим качеством или прерывистым. Чрезмерная нагрузка на сеть также влияет и на работу других приложений, особенно, если используется одна сеть для передачи видеонаблюдения и для работы организации.

Формула для расчета пропускной способности локально вычислительной сети:X * (# камер) * (Разрешение в мегапикселях каждой камеры) * (FPS), где X — это переменная, которая зависит от степени сжатия видео и уровня активности движения в кадре. При использовании кодека h264 будем считать, что это значение равно: 0,03 (низкая) 0,06 (средняя) 0,09 (высокая)Значения коэффициента «X» усреднены и получены в ходе практических экспериментов с камерами разных производителей. Потому как теоретические расчеты не всегда совпадают с полученными реальными показателями. Расчет не претендует на истину, и основан исключительно на наших практических экспериментах!

# камер — количество камер. Допустим у нас их 16.

Разрешение в мегапикселях каждой камеры, при разрешении 4096×2160 перемножаем количество пикселей по горизонтали и по вертикали, то есть получаем 8,8 Мегапикселей.

FPS — Кадров в секунду. Наша камера работает с частотой 22 кадра в секунду.Наш расчет: 0,06*16*8,8*22=185,86 Мбит/с (Необходимая пропускная способность локально вычислительной сети при среднем уровне активности в кадре, не менее).Пример 2. Имеем: 4 камеры в качестве Full-HD 1920×1080, 25 к/c, оборудование установлено на производстве, которое работает в две смены круглосуточно, то есть уровень активности высокий.Наш расчет: 0,09*4*2,1*25=18,9 Мбит/с (Необходимая пропускная способность локально вычислительной сети при высоком уровне активности в кадре, не менее). После вычисления требуемой пропускной способности сети для организации системы видеонаблюдения вы можете подобрать соответствующее сетевое оборудование. Для первого примера нам потребуется скорость локальной сети не ниже 1 Гбит/с, соответственно все оборудование должно соответствовать указанной пропускной способности. При выборе видеорегистратора обращайте внимание на суммарно входящую пропускную способность (ее обычно указывает производитель в технических характеристиках или в паспорте изделия), если ее не будет хватать, то придется уменьшать битрейт на камерах или строить систему видеонаблюдения на нескольких видеорегистраторах.

Автор: Дмитрий Самохвалов, технический редактор компании Rucam-Video.

Вопросы, замечания и предложения пишите на: samohvalov@rucam-video.ru

2018-01-27

Комментарии

Реклама

  1. Статьи
  2. Системы видеонаблюдения
  3. Глава 3. Пропускная способность для видеонаблюдения (основные понятия)

26 Август 2011

В случае использовании IP-камер, мегапиксельных камер, NVR-ов или даже DVR-ов при планировании, проектировании и использовании систем IP-видеонаблюдения очень важным является понимание основ того, какое значение пропускной способности доступно и какая пропускная способность требуется.

Все, кто занимаются IP-видеонаблюдением, должны иметь представление об этих основах, поскольку пропускная способность – это важный фактор для видеонаблюдения.

Какое значение пропускной способности доступно?

Для вычисления того, сколько пропускной способности доступно, в первую очередь необходимо определить, между какими местами должна быть обеспечена связь. Это очень похоже на вождение автомобиля, когда имеется отправная точка и точка назначения. Например, от филиала до центрального офиса. Однако, в отличие от вождения автомобиля, доступное значение пропускной способности может варьироваться весьма существенно в зависимости от того, куда нужно передавать сигнал.

Наиболее важным фактором в определении того, сколько пропускной способности доступно для использования, является вопрос о том, требуется ли осуществлять соединение между двумя зданиями. В качестве примера:

Типичные значения доступной пропускной способности

Внутри здания

70 Мбит /c… 700 Мбит/ с

Между зданиями

0,5 Мбит/с… 5 Мбит/с

Значение доступной пропускной способности при передаче информации от одного офиса к соседнему офису внутри здания может быть в 200 раз больше по сравнению с пропускной способностью при передаче от офиса к его филиалу, размещенному в другом квартале.

Сказанное справедливо в 90% случаев (и даже более). Больше пропускной способности оказывается доступно в следующих случаях:

  • здания разные, но они находятся на территории единого кампуса (университетского городка),
  • в районе делового центра крупного города,
  • проект реализуется для телекоммуникационной или научно-исследовательской компании.

Между зданиями

Ключевым фактором в доступности пропускной способности является стоимость используемых между зданиями сетей. Обычно это относится к WAN (Wide Area Network – глобальная сеть), этот тип трафика обычно предоставляется телекоммуникационными компаниями. Типичным примером могут служить кабельный модем или DSL, которые могут повсюду обеспечить трафик от 0,5 Мбит/с до 5 Мбит/с по цене от 50 USD до 150 USD в месяц. Другим примером является линия Т1, которая предоставляет 1,5 Мбит/с по цене примерно от 300 USD до 600 USD в месяц. Для более высоких значений пропускной способности стоимость становится весьма высокой. В большинстве мест стоимость приобретения канала связи с пропускной способностью 10 Мбит/с может составлять несколько тысяч долларов в месяц.

Много говорится об оптоволокне, но широко оно не будет доступно еще многие годы. FTTH (Fiber to the home) – оптоволокно до дома или до бизнеса может существенно снизить стоимость пропускной способности. Тем не менее, использовать его очень дорого, и за последние десятилетия (даже дольше) нельзя похвастаться существенным прогрессом, разве что захватывающими дискуссиями на эту тему. Даже если все это представляется чудесным, но много ли толку в том, чем нельзя воспользоваться?

Внутри зданий

В отличие от рассмотренного, пропускная способность внутри зданий (или кампусов) достаточно высокая, поскольку стоимость использования сети довольно низкая. Пользователи даже без особых технических знаний могут легко настроить внутри здания сеть 1000 Мбит/с (известную как LAN — Local Area Networks, то есть локальную сеть), заплатив за ее монтаж менее 1000 USD, при том, что ежемесячная плата вообще отсутствует. По сравнению с этим ежемесячная стоимость WAN с такой же пропускной способностью может составлять десятки тысяч долларов.

Стоимость использования сетей в зданиях низкая вследствие того, что затраты на них минимальны, поскольку не связаны с затратами на строительные работы. При создании сети в городе требуются разрешения на места прокладки кабелей, земляные работы, монтаж на телефонных столбах и т.д. Это огромные проекты, которые могут потребовать миллионов и даже миллиардов долларов авансовых расходов. В противоположность этому, внутри здания кабель зачастую можно быстро и легко пропустить через потолок (хоть это и не профессиональное решение, тем не менее, многие используют такой прием монтажа).

Широко обсуждаются существующие методы беспроводного подключения (WiMax, WiFi, 3G и т.п.), однако беспроводное подключение не обеспечивает ни существенно большую пропускную способность, ни намного лучшие цены по сравнению с использованием DSL или кабельного модема. По существу, беспроводное подключение не решает проблемы дороговизны и ограниченной пропускной способности при связи между зданиями. Это говорит об абсолютном превосходстве беспроводного подключения над DSL или кабельным модемом для мобильных решений и подключения к удаленным местам, но оно не может быть экономически эффективным. Просто дело в том, что будучи намного более дорогим решением, чем использование кабелей внутри зданий (при той же пропускной способности), оно не решит проблему пропускной способности между зданиями.

Сколько пропускной способности требуется IP-камерам?

Для грубой оценки пропускной способности, требуемой IP-камерой, можно использовать простое правило: 1 Мбит/с. Но кроме этого, существует много факторов, которые влияют на результирующую потребность в пропускной способности. Естественно, что поток от IP-камеры можно передавать медленно, например, 0,2 Мбит/с (200 Кбит/с), а можно быстро, например, 6 Мбит/с. Чем больше разрешающая способность и чем выше частота кадров, тем большей должна быть пропускная способность. Чем более эффективный кодек используется, тем меньше требования к пропускной способности.

Для грубой оценки пропускной способности, требуемой для мегапиксельной камеры, можно принять значения от 5 Мбит/с до 10 Мбит/с. Опять же, существует большое число факторов, влияющих на результирующую потребность в разрешающей способности. Для 1,3-мегапиксельной камеры при скорости обновления 1 кадр в секунду может потребоваться всего 0,8 Мбит/с (800 Кбит/с), в то время как для 5-мегапиксельной камеры уже может потребоваться 45 Мбит/с.

Что все это значит для проектируемой системы IP-видеонаблюдения?

Так же, как с семейным бюджетом, теперь мы можем прикинуть — «что мы можем себе позволить».

Имеющийся запас пропускной способности

Между зданиями

0,5 Мбит/с… 5 Мбит/с

Внутри зданий

70 Мбит/с… 700 Мбит/с

Потребность в пропускной способности

IP-камера

1 Мбит/с

Мегапиксельная камера

5 Мбит/с… 10 Мбит/с

Используя эти таблицы, можно быстро оценить возможные комбинации из IP-камер и мегапиксельных камер при передаче сигналов внутри зданий или при связи между зданиями.

    Как следствие описанной ситуации, стандартная конфигурация систем IP-видеонаблюдения может выглядеть следующим образом.

    • Местный регистратор в каждом здании или в удаленном месте. Местный регистратор принимает потоки камер данного здания и хранит их.
    • Местный регистратор пересылает потоки (живого изображения или записанного) вне данного здания только тогда, когда пользователь действительно хочет увидеть видео. В этом случае вместо перегрузки WAN-сети сутки напролет ничем не мотивированными запросами, мы имеем пропускную способность, которая расходуется лишь в моменты, когда пользователь хочет что-то посмотреть. Обычно удаленный просмотр происходит непредсказуемо, так что в этом случае IP-видеонаблюдение мило сосуществует с дорогостоящей WAN-сетью.
    • Местный регистратор для передачи потокового видео к удаленным клиентам имеет встроенные функции снижения требований к пропускной способности. Чтобы гарантировать отсутствие перегрузки сети видеосистемой и возможность удаленным наблюдателям реально видеть происходящее в другом месте, большинство систем имеют возможность снижения частоты кадров потокового видео или динамического снижения качества изображения. Обычно потока живого видео достаточно для распознавания основных угроз. В любом случае, пропускная способность, как правило, настолько дорога (особенно пропускная способность восходящего трафика, требуемого для отправки удаленному наблюдателю), что данное решение является лучшим с точки зрения экономической эффективности.

    Заключение

    Знание значений пропускной способности, доступной для DVR-ов и NVR-ов, а также того, сколько пропускной способности требуется для IP-камер или мегапиксельных камер — это ключевой момент при планировании и использовании реально работающих IP-видеосистем. Хотя это лишь общий обзор, но я надеюсь, он поможет в понимании значения пропускной способности для IP-видеонаблюдения.

    Источник: Security-bridge

    Оцените статью
    Рейтинг автора
    5
    Материал подготовил
    Илья Коршунов
    Наш эксперт
    Написано статей
    134
    А как считаете Вы?
    Напишите в комментариях, что вы думаете – согласны
    ли со статьей или есть что добавить?
    Добавить комментарий